Trustworthy Artificial Intelligence Framework for Proactive Detection
and Risk Explanation of Cyber Attacks in Smart Grid
- URL: http://arxiv.org/abs/2306.07993v1
- Date: Mon, 12 Jun 2023 02:28:17 GMT
- Title: Trustworthy Artificial Intelligence Framework for Proactive Detection
and Risk Explanation of Cyber Attacks in Smart Grid
- Authors: Md. Shirajum Munir, Sachin Shetty, and Danda B. Rawat
- Abstract summary: The rapid growth of distributed energy resources (DERs) poses significant cybersecurity and trust challenges to the grid controller.
To enable a trustworthy smart grid controller, this work investigates a trustworthy artificial intelligence (AI) mechanism for proactive identification and explanation of the cyber risk caused by the control/status message of DERs.
- Score: 11.122588110362706
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid growth of distributed energy resources (DERs), such as renewable
energy sources, generators, consumers, and prosumers in the smart grid
infrastructure, poses significant cybersecurity and trust challenges to the
grid controller. Consequently, it is crucial to identify adversarial tactics
and measure the strength of the attacker's DER. To enable a trustworthy smart
grid controller, this work investigates a trustworthy artificial intelligence
(AI) mechanism for proactive identification and explanation of the cyber risk
caused by the control/status message of DERs. Thus, proposing and developing a
trustworthy AI framework to facilitate the deployment of any AI algorithms for
detecting potential cyber threats and analyzing root causes based on Shapley
value interpretation while dynamically quantifying the risk of an attack based
on Ward's minimum variance formula. The experiment with a state-of-the-art
dataset establishes the proposed framework as a trustworthy AI by fulfilling
the capabilities of reliability, fairness, explainability, transparency,
reproducibility, and accountability.
Related papers
- Computational Safety for Generative AI: A Signal Processing Perspective [65.268245109828]
computational safety is a mathematical framework that enables the quantitative assessment, formulation, and study of safety challenges in GenAI.
We show how sensitivity analysis and loss landscape analysis can be used to detect malicious prompts with jailbreak attempts.
We discuss key open research challenges, opportunities, and the essential role of signal processing in computational AI safety.
arXiv Detail & Related papers (2025-02-18T02:26:50Z) - Towards Robust Stability Prediction in Smart Grids: GAN-based Approach under Data Constraints and Adversarial Challenges [53.2306792009435]
We introduce a novel framework to detect instability in smart grids by employing only stable data.
It relies on a Generative Adversarial Network (GAN) where the generator is trained to create instability data that are used along with stable data to train the discriminator.
Our solution, tested on a dataset composed of real-world stable and unstable samples, achieve accuracy up to 97.5% in predicting grid stability and up to 98.9% in detecting adversarial attacks.
arXiv Detail & Related papers (2025-01-27T20:48:25Z) - Discovery of False Data Injection Schemes on Frequency Controllers with Reinforcement Learning [7.540446548202259]
inverter-based distributed energy resources (DERs) play a crucial role in integrating renewable energy into the power system.
We propose to employ reinforcement learning to identify potential threats and system vulnerabilities.
arXiv Detail & Related papers (2024-08-30T01:09:32Z) - Threat-Informed Cyber Resilience Index: A Probabilistic Quantitative Approach to Measure Defence Effectiveness Against Cyber Attacks [0.36832029288386137]
This paper introduces the Cyber Resilience Index (CRI), a threat-informed probabilistic approach to quantifying an organisation's defence effectiveness against cyber-attacks (campaigns)
Building upon the Threat-Intelligence Based Security Assessment (TIBSA) methodology, we present a mathematical model that translates complex threat intelligence into an actionable, unified metric similar to a stock market index, that executives can understand and interact with while teams can act upon.
arXiv Detail & Related papers (2024-06-27T17:51:48Z) - GAN-GRID: A Novel Generative Attack on Smart Grid Stability Prediction [53.2306792009435]
We propose GAN-GRID a novel adversarial attack targeting the stability prediction system of a smart grid tailored to real-world constraints.
Our findings reveal that an adversary armed solely with the stability model's output, devoid of data or model knowledge, can craft data classified as stable with an Attack Success Rate (ASR) of 0.99.
arXiv Detail & Related papers (2024-05-20T14:43:46Z) - A Zero Trust Framework for Realization and Defense Against Generative AI
Attacks in Power Grid [62.91192307098067]
This paper proposes a novel zero trust framework for a power grid supply chain (PGSC)
It facilitates early detection of potential GenAI-driven attack vectors, assessment of tail risk-based stability measures, and mitigation of such threats.
Experimental results show that the proposed zero trust framework achieves an accuracy of 95.7% on attack vector generation, a risk measure of 9.61% for a 95% stable PGSC, and a 99% confidence in defense against GenAI-driven attack.
arXiv Detail & Related papers (2024-03-11T02:47:21Z) - Mathematical Algorithm Design for Deep Learning under Societal and
Judicial Constraints: The Algorithmic Transparency Requirement [65.26723285209853]
We derive a framework to analyze whether a transparent implementation in a computing model is feasible.
Based on previous results, we find that Blum-Shub-Smale Machines have the potential to establish trustworthy solvers for inverse problems.
arXiv Detail & Related papers (2024-01-18T15:32:38Z) - Enhancing Cyber-Resiliency of DER-based SmartGrid: A Survey [15.633226785669203]
This survey aims to provide a systematical and comprehensive review regarding the cyber-resiliency enhancement (CRE) of DER-based smart grid.
An integrated threat modeling method is tailored for the hierarchical DER-based smart grid with special emphasis on vulnerability identification and impact analysis.
A CRE framework is subsequently proposed to incorporate the five key resiliency enablers.
arXiv Detail & Related papers (2023-05-09T10:59:56Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
We study new adversarial perturbations that enable an attacker to gain control over decisions in generic Artificial Intelligence systems.
In contrast to adversarial data modification, the attack mechanism we consider here involves alterations to the AI system itself.
arXiv Detail & Related papers (2021-06-26T10:50:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.