Trustworthy Artificial Intelligence Framework for Proactive Detection
and Risk Explanation of Cyber Attacks in Smart Grid
- URL: http://arxiv.org/abs/2306.07993v1
- Date: Mon, 12 Jun 2023 02:28:17 GMT
- Title: Trustworthy Artificial Intelligence Framework for Proactive Detection
and Risk Explanation of Cyber Attacks in Smart Grid
- Authors: Md. Shirajum Munir, Sachin Shetty, and Danda B. Rawat
- Abstract summary: The rapid growth of distributed energy resources (DERs) poses significant cybersecurity and trust challenges to the grid controller.
To enable a trustworthy smart grid controller, this work investigates a trustworthy artificial intelligence (AI) mechanism for proactive identification and explanation of the cyber risk caused by the control/status message of DERs.
- Score: 11.122588110362706
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid growth of distributed energy resources (DERs), such as renewable
energy sources, generators, consumers, and prosumers in the smart grid
infrastructure, poses significant cybersecurity and trust challenges to the
grid controller. Consequently, it is crucial to identify adversarial tactics
and measure the strength of the attacker's DER. To enable a trustworthy smart
grid controller, this work investigates a trustworthy artificial intelligence
(AI) mechanism for proactive identification and explanation of the cyber risk
caused by the control/status message of DERs. Thus, proposing and developing a
trustworthy AI framework to facilitate the deployment of any AI algorithms for
detecting potential cyber threats and analyzing root causes based on Shapley
value interpretation while dynamically quantifying the risk of an attack based
on Ward's minimum variance formula. The experiment with a state-of-the-art
dataset establishes the proposed framework as a trustworthy AI by fulfilling
the capabilities of reliability, fairness, explainability, transparency,
reproducibility, and accountability.
Related papers
- Discovery of False Data Injection Schemes on Frequency Controllers with Reinforcement Learning [7.540446548202259]
inverter-based distributed energy resources (DERs) play a crucial role in integrating renewable energy into the power system.
We propose to employ reinforcement learning to identify potential threats and system vulnerabilities.
arXiv Detail & Related papers (2024-08-30T01:09:32Z) - Threat-Informed Cyber Resilience Index: A Probabilistic Quantitative Approach to Measure Defence Effectiveness Against Cyber Attacks [0.36832029288386137]
This paper introduces the Cyber Resilience Index (CRI), a threat-informed probabilistic approach to quantifying an organisation's defence effectiveness against cyber-attacks (campaigns)
Building upon the Threat-Intelligence Based Security Assessment (TIBSA) methodology, we present a mathematical model that translates complex threat intelligence into an actionable, unified metric similar to a stock market index, that executives can understand and interact with while teams can act upon.
arXiv Detail & Related papers (2024-06-27T17:51:48Z) - GAN-GRID: A Novel Generative Attack on Smart Grid Stability Prediction [53.2306792009435]
We propose GAN-GRID a novel adversarial attack targeting the stability prediction system of a smart grid tailored to real-world constraints.
Our findings reveal that an adversary armed solely with the stability model's output, devoid of data or model knowledge, can craft data classified as stable with an Attack Success Rate (ASR) of 0.99.
arXiv Detail & Related papers (2024-05-20T14:43:46Z) - A Zero Trust Framework for Realization and Defense Against Generative AI
Attacks in Power Grid [62.91192307098067]
This paper proposes a novel zero trust framework for a power grid supply chain (PGSC)
It facilitates early detection of potential GenAI-driven attack vectors, assessment of tail risk-based stability measures, and mitigation of such threats.
Experimental results show that the proposed zero trust framework achieves an accuracy of 95.7% on attack vector generation, a risk measure of 9.61% for a 95% stable PGSC, and a 99% confidence in defense against GenAI-driven attack.
arXiv Detail & Related papers (2024-03-11T02:47:21Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence (GAI) stands at the forefront of AI innovation, demonstrating rapid advancement and unparalleled proficiency in generating diverse content.
In this paper, we offer an extensive survey on the various applications of GAI in enhancing security within the physical layer of communication networks.
We delve into the roles of GAI in addressing challenges of physical layer security, focusing on communication confidentiality, authentication, availability, resilience, and integrity.
arXiv Detail & Related papers (2024-02-21T06:22:41Z) - Mathematical Algorithm Design for Deep Learning under Societal and
Judicial Constraints: The Algorithmic Transparency Requirement [65.26723285209853]
We derive a framework to analyze whether a transparent implementation in a computing model is feasible.
Based on previous results, we find that Blum-Shub-Smale Machines have the potential to establish trustworthy solvers for inverse problems.
arXiv Detail & Related papers (2024-01-18T15:32:38Z) - Enhancing Cyber-Resiliency of DER-based SmartGrid: A Survey [15.633226785669203]
This survey aims to provide a systematical and comprehensive review regarding the cyber-resiliency enhancement (CRE) of DER-based smart grid.
An integrated threat modeling method is tailored for the hierarchical DER-based smart grid with special emphasis on vulnerability identification and impact analysis.
A CRE framework is subsequently proposed to incorporate the five key resiliency enablers.
arXiv Detail & Related papers (2023-05-09T10:59:56Z) - Joint Sensing, Communication, and AI: A Trifecta for Resilient THz User
Experiences [118.91584633024907]
A novel joint sensing, communication, and artificial intelligence (AI) framework is proposed so as to optimize extended reality (XR) experiences over terahertz (THz) wireless systems.
arXiv Detail & Related papers (2023-04-29T00:39:50Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
We study new adversarial perturbations that enable an attacker to gain control over decisions in generic Artificial Intelligence systems.
In contrast to adversarial data modification, the attack mechanism we consider here involves alterations to the AI system itself.
arXiv Detail & Related papers (2021-06-26T10:50:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.