Discovery of False Data Injection Schemes on Frequency Controllers with Reinforcement Learning
- URL: http://arxiv.org/abs/2408.16958v1
- Date: Fri, 30 Aug 2024 01:09:32 GMT
- Title: Discovery of False Data Injection Schemes on Frequency Controllers with Reinforcement Learning
- Authors: Romesh Prasad, Malik Hassanaly, Xiangyu Zhang, Abhijeet Sahu,
- Abstract summary: inverter-based distributed energy resources (DERs) play a crucial role in integrating renewable energy into the power system.
We propose to employ reinforcement learning to identify potential threats and system vulnerabilities.
- Score: 7.540446548202259
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While inverter-based distributed energy resources (DERs) play a crucial role in integrating renewable energy into the power system, they concurrently diminish the grid's system inertia, elevating the risk of frequency instabilities. Furthermore, smart inverters, interfaced via communication networks, pose a potential vulnerability to cyber threats if not diligently managed. To proactively fortify the power grid against sophisticated cyber attacks, we propose to employ reinforcement learning (RL) to identify potential threats and system vulnerabilities. This study concentrates on analyzing adversarial strategies for false data injection, specifically targeting smart inverters involved in primary frequency control. Our findings demonstrate that an RL agent can adeptly discern optimal false data injection methods to manipulate inverter settings, potentially causing catastrophic consequences.
Related papers
- GAN-GRID: A Novel Generative Attack on Smart Grid Stability Prediction [53.2306792009435]
We propose GAN-GRID a novel adversarial attack targeting the stability prediction system of a smart grid tailored to real-world constraints.
Our findings reveal that an adversary armed solely with the stability model's output, devoid of data or model knowledge, can craft data classified as stable with an Attack Success Rate (ASR) of 0.99.
arXiv Detail & Related papers (2024-05-20T14:43:46Z) - An Unsupervised Adversarial Autoencoder for Cyber Attack Detection in Power Distribution Grids [0.0]
This paper proposes an unsupervised adversarial autoencoder (AAE) model to detect false data injection attacks (FDIAs) in unbalanced power distribution grids.
The proposed method utilizes long short-term memory (LSTM) in the structure of the autoencoder to capture the temporal dependencies in the time-series measurements.
It is tested on IEEE 13-bus and 123-bus systems with historical meteorological data and historical real-world load data.
arXiv Detail & Related papers (2024-03-31T01:20:01Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuard is the first framework for fault type and zone classification resilient to adversarial attacks.
We propose a low-complexity fault prediction model and an online adversarial training technique to enhance robustness.
Our model outclasses the state-of-the-art for resilient fault prediction benchmarking, with an accuracy of up to 0.958.
arXiv Detail & Related papers (2024-03-26T08:51:23Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Investigation of Multi-stage Attack and Defense Simulation for Data Synthesis [2.479074862022315]
This study proposes a model for generating synthetic data of multi-stage cyber attacks in the power grid.
It uses attack trees to model the attacker's sequence of steps and a game-theoretic approach to incorporate the defender's actions.
arXiv Detail & Related papers (2023-12-21T09:54:18Z) - Trustworthy Artificial Intelligence Framework for Proactive Detection
and Risk Explanation of Cyber Attacks in Smart Grid [11.122588110362706]
The rapid growth of distributed energy resources (DERs) poses significant cybersecurity and trust challenges to the grid controller.
To enable a trustworthy smart grid controller, this work investigates a trustworthy artificial intelligence (AI) mechanism for proactive identification and explanation of the cyber risk caused by the control/status message of DERs.
arXiv Detail & Related papers (2023-06-12T02:28:17Z) - Downlink Power Allocation in Massive MIMO via Deep Learning: Adversarial
Attacks and Training [62.77129284830945]
This paper considers a regression problem in a wireless setting and shows that adversarial attacks can break the DL-based approach.
We also analyze the effectiveness of adversarial training as a defensive technique in adversarial settings and show that the robustness of DL-based wireless system against attacks improves significantly.
arXiv Detail & Related papers (2022-06-14T04:55:11Z) - Robust, Deep, and Reinforcement Learning for Management of Communication
and Power Networks [6.09170287691728]
The present thesis first develops principled methods to make generic machine learning models robust against distributional uncertainties and adversarial data.
We then build on this robust framework to design robust semi-supervised learning over graph methods.
The second part of this thesis aspires to fully unleash the potential of next-generation wired and wireless networks.
arXiv Detail & Related papers (2022-02-08T05:49:06Z) - Improving Robustness of Reinforcement Learning for Power System Control
with Adversarial Training [71.7750435554693]
We show that several state-of-the-art RL agents proposed for power system control are vulnerable to adversarial attacks.
Specifically, we use an adversary Markov Decision Process to learn an attack policy, and demonstrate the potency of our attack.
We propose to use adversarial training to increase the robustness of RL agent against attacks and avoid infeasible operational decisions.
arXiv Detail & Related papers (2021-10-18T00:50:34Z) - Risk-Aware Learning for Scalable Voltage Optimization in Distribution
Grids [19.0428894025206]
This paper aims to improve learning-enabled approaches by accounting for the potential risks associated with reactive power prediction and voltage deviation.
Specifically, we advocate to measure such risks using the conditional value-at-risk (CVaR) loss based on the worst-case samples only.
To tackle this issue, we propose to accelerate the training process under the CVaR loss objective by selecting the mini-batches that are more likely to contain the worst-case samples of interest.
arXiv Detail & Related papers (2021-10-04T15:00:13Z) - Enhanced Adversarial Strategically-Timed Attacks against Deep
Reinforcement Learning [91.13113161754022]
We introduce timing-based adversarial strategies against a DRL-based navigation system by jamming in physical noise patterns on the selected time frames.
Our experimental results show that the adversarial timing attacks can lead to a significant performance drop.
arXiv Detail & Related papers (2020-02-20T21:39:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.