論文の概要: Artificial intelligence in digital pathology: a diagnostic test accuracy
systematic review and meta-analysis
- arxiv url: http://arxiv.org/abs/2306.07999v2
- Date: Mon, 19 Jun 2023 13:07:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-22 00:53:21.272782
- Title: Artificial intelligence in digital pathology: a diagnostic test accuracy
systematic review and meta-analysis
- Title(参考訳): デジタル病理における人工知能 : 診断精度の体系的レビューとメタ分析
- Authors: Clare McGenity, Emily L Clarke, Charlotte Jennings, Gillian Matthews,
Caroline Cartlidge, Henschel Freduah-Agyemang, Deborah D Stocken, Darren
Treanor
- Abstract要約: この体系的なレビューとメタアナリシスは、あらゆる種類の人工知能を用いた診断精度の研究を含む。
包含物として100の研究が同定され、152,000枚以上のスライド画像 (WSI) に相当し、多くの病型を表わした。
これらの研究では、平均感度は96.3%(CI 94.1-97.7)、平均特異度は93.3%(CI 90.5-95.4)であった。
全体として、AIはWSIに適用した場合に適切な精度を提供するが、そのパフォーマンスをより厳格に評価する必要がある。
- 参考スコア(独自算出の注目度): 0.3957768262206625
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Ensuring diagnostic performance of AI models before clinical use is key to
the safe and successful adoption of these technologies. Studies reporting AI
applied to digital pathology images for diagnostic purposes have rapidly
increased in number in recent years. The aim of this work is to provide an
overview of the diagnostic accuracy of AI in digital pathology images from all
areas of pathology. This systematic review and meta-analysis included
diagnostic accuracy studies using any type of artificial intelligence applied
to whole slide images (WSIs) in any disease type. The reference standard was
diagnosis through histopathological assessment and / or immunohistochemistry.
Searches were conducted in PubMed, EMBASE and CENTRAL in June 2022. We
identified 2976 studies, of which 100 were included in the review and 48 in the
full meta-analysis. Risk of bias and concerns of applicability were assessed
using the QUADAS-2 tool. Data extraction was conducted by two investigators and
meta-analysis was performed using a bivariate random effects model. 100 studies
were identified for inclusion, equating to over 152,000 whole slide images
(WSIs) and representing many disease types. Of these, 48 studies were included
in the meta-analysis. These studies reported a mean sensitivity of 96.3% (CI
94.1-97.7) and mean specificity of 93.3% (CI 90.5-95.4) for AI. There was
substantial heterogeneity in study design and all 100 studies identified for
inclusion had at least one area at high or unclear risk of bias. This review
provides a broad overview of AI performance across applications in whole slide
imaging. However, there is huge variability in study design and available
performance data, with details around the conduct of the study and make up of
the datasets frequently missing. Overall, AI offers good accuracy when applied
to WSIs but requires more rigorous evaluation of its performance.
- Abstract(参考訳): 臨床使用前のAIモデルの診断性能を保証することが、これらの技術の安全性と成功の鍵となる。
近年,診断目的でデジタル病理画像に適用されたAIを報告する研究が急速に増えている。
本研究の目的は,すべての病理領域のデジタル病理画像におけるaiの診断精度の概観を提供することである。
この体系的なレビューとメタアナリシスは、あらゆる病気のタイプの全スライド画像(wsis)に適用されるあらゆるタイプの人工知能を用いた診断精度の研究を含んでいた。
基準基準は病理組織学的評価と免疫組織化学による診断であった。
2022年6月にPubMed、EMBASE、Centralで調査が行われた。
対象は2976例で,その内100例はレビューに,48例はメタ分析に含まれていた。
quadas-2ツールを用いてバイアスのリスクと適用可能性の懸念を評価した。
2人の研究者がデータ抽出を行い,二変量ランダム効果モデルを用いてメタ分析を行った。
包含物として100の研究が同定され、152,000枚以上のスライド画像 (WSI) に相当し、多くの病型を表わした。
このうち48の研究がメタアナリシスに含まれていた。
これらの研究では、平均感度は96.3%(CI 94.1-97.7)、平均特異度は93.3%(CI 90.5-95.4)であった。
研究設計にはかなりの多様性があり、包含物が特定された100の研究はすべて、バイアスのリスクが高いか不明瞭な領域を少なくとも1つ持っていた。
このレビューは、スライド画像全体におけるアプリケーション間のAIパフォーマンスの広範な概要を提供する。
しかし、研究設計と利用可能なパフォーマンスデータには大きなばらつきがあり、研究の実施状況の詳細と、しばしば欠落するデータセットを構成することができる。
全体として、AIはWSIに適用した場合に適切な精度を提供するが、そのパフォーマンスをより厳格に評価する必要がある。
関連論文リスト
- Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
本研究は,人工知能(AI)モデルを用いた医用合成データ生成の臨床評価に焦点を当てた。
本論文は,a) 医用専門家による合成画像の体系的評価のためのプロトコルを提示し,b) 高分解能WCE画像合成のための新しい変分オートエンコーダモデルであるTIDE-IIを評価する。
その結果、TIDE-IIは臨床的に関連性のあるWCE画像を生成し、データの不足に対処し、診断ツールの強化に役立つことがわかった。
論文 参考訳(メタデータ) (2024-10-31T19:48:50Z) - Methodology and Real-World Applications of Dynamic Uncertain Causality Graph for Clinical Diagnosis with Explainability and Invariance [41.373856519548404]
Dynamic Uncertain Causality Graph (DUCG)アプローチは、さまざまなアプリケーションシナリオで因果性駆動、説明可能、不変である。
54件の主訴を含む46件のDUCGモデルが製造された。
実際の診断は100万件以上行われており、誤診断は17例に過ぎなかった。
論文 参考訳(メタデータ) (2024-06-09T11:37:45Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
神経変性疾患(神経変性疾患、ND)は、伝統的に医学的診断とモニタリングのために広範囲の医療資源と人的努力を必要とする。
重要な疾患関連運動症状として、ヒトの歩行を利用して異なるNDを特徴づけることができる。
人工知能(AI)モデルの現在の進歩は、NDの識別と分類のための自動歩行分析を可能にする。
論文 参考訳(メタデータ) (2024-05-21T06:44:40Z) - Artificial intelligence for abnormality detection in high volume neuroimaging: a systematic review and meta-analysis [0.5934394862891423]
神経画像における異常を検出する人工知能(AI)モデルを評価するほとんどの研究は、非表現的な患者コホートで試験されている。
目的は、診断テストの精度を判定し、第一線高ボリュームのニューロイメージングタスクを実行するAIモデルの使用を支持する証拠を要約することであった。
論文 参考訳(メタデータ) (2024-05-09T10:12:17Z) - Artificial Intelligence in Ovarian Cancer Histopathology: A Systematic
Review [1.832300121391956]
方法: PubMed, Scopus, Web of Science, CENTRAL, WHO-ICTRPの検索を行った。
PROBASTを用いてバイアスのリスクを評価した。
37の診断モデル、22の予後モデル、21の診断関連結果を含む80の関心モデルがあった。
すべてのモデルが全体として偏見のリスクが高いか、あるいは不明確であることが判明し、ほとんどの研究は分析において偏見のリスクが高いことが判明した。
論文 参考訳(メタデータ) (2023-03-31T12:26:29Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
磁気共鳴脳画像における運動アーチファクトは重要な問題である。
MR画像の画質評価は,臨床診断に先立って基本的である。
構造類似度指数(SSIM)回帰に基づく自動画像品質評価法が提案されている。
論文 参考訳(メタデータ) (2022-06-14T10:16:54Z) - StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact
Context-encoding Variational Autoencoder [48.2010192865749]
教師なし異常検出(UAD)は、健康な被験者の異常なデータセットからデータ分布を学習し、分布サンプルの抽出に応用することができる。
本研究では,コンテクストエンコーディング(context-encoding)VAE(ceVAE)モデルのコンパクトバージョンと,前処理と後処理のステップを組み合わせて,UADパイプライン(StRegA)を作成することを提案する。
提案したパイプラインは、BraTSデータセットのT2w画像と0.859$pm$0.112の腫瘍を検出しながら、Diceスコアが0.642$pm$0.101に達した。
論文 参考訳(メタデータ) (2022-01-31T14:27:35Z) - Diagnosis of COVID-19 Using Machine Learning and Deep Learning: A review [0.0]
本稿では、新型コロナウイルス(COVID-19)対策における機械学習(ML)と深層学習(DL)技術の適用について、体系的に検討する。
AI、COVID-19、ML、予測、DL、X線、CT(Computed Tomography)のキーワードに基づいて、440記事の全文レビューを行った。
論文 参考訳(メタデータ) (2021-10-28T06:17:50Z) - Artificial Intelligence in Dry Eye Disease [4.444624718360766]
ドライアイ病(DED)は5~50%の頻度である。
医学への応用における近年の成功は、主に機械学習のサブ分野の発展によるものである。
これは、DEDにおけるAIの使用に関する最初の文献レビューである。
論文 参考訳(メタデータ) (2021-09-02T10:17:50Z) - What is the State of the Art of Computer Vision-Assisted Cytology? A
Systematic Literature Review [47.42354724922676]
現在,細胞診に応用されているコンピュータビジョン技術の現状を明らかにするために,システマティック文献レビューを実施している。
分析された研究で最も使われている方法は深層学習(70論文)であるが、古典的なコンピュータビジョンのみ(101論文)を使用するものは少ない。
結論として,多くの染色に対して高品質なデータセットがまだ存在せず,ほとんどの研究は日常的な臨床診断ルーチンに適用できるほど成熟していない。
論文 参考訳(メタデータ) (2021-05-24T13:50:45Z) - Machine Learning Methods for Histopathological Image Analysis: A Review [62.14548392474976]
病理組織像 (HIs) は癌診断における腫瘍の種類を評価するための金の基準である。
このような分析を高速化する方法の1つは、コンピュータ支援診断(CAD)システムを使用することである。
論文 参考訳(メタデータ) (2021-02-07T19:12:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。