Long-range entanglement from spontaneous non-onsite symmetry breaking
- URL: http://arxiv.org/abs/2411.05004v1
- Date: Thu, 07 Nov 2024 18:59:51 GMT
- Title: Long-range entanglement from spontaneous non-onsite symmetry breaking
- Authors: Zhehao Zhang, Yabo Li, Tsung-Cheng Lu,
- Abstract summary: We show a frustration-free lattice model exhibiting SSB of a non-onsite symmetry.
We analytically prove the two-fold ground-state degeneracy and the existence of a finite energy gap.
Our work reveals the exotic features of SSB of non-onsite symmetries, which may lie beyond the framework of topological holography.
- Score: 3.3754780158324564
- License:
- Abstract: We explore the states of matter arising from the spontaneous symmetry breaking (SSB) of $\mathbb{Z}_2$ non-onsite symmetries. In one spatial dimension, we construct a frustration-free lattice model exhibiting SSB of a non-onsite symmetry, which features the coexistence of two ground states with distinct symmetry-protected topological (SPT) orders. We analytically prove the two-fold ground-state degeneracy and the existence of a finite energy gap. Fixing the symmetry sector yields a long-range entangled ground state that features long-range correlations among non-invertible charged operators. We also present a constant-depth measurement-feedback protocol to prepare such a state with a constant success probability in the thermodynamic limit, which may be of independent interest. Under a symmetric deformation, the SSB persists up to a critical point, beyond which a gapless phase characterized by a conformal field theory emerges. In two spatial dimensions, the SSB of 1-form non-onsite symmetries leads to a long-range entangled state (SPT soup) - a condensate of 1d SPT along any closed loops. On a torus, there are four such locally indistinguishable states that exhibit algebraic correlations between local operators, which we derived via a mapping to the critical $O(2)$ loop model. This provides an intriguing example of `topological quantum criticality'. Our work reveals the exotic features of SSB of non-onsite symmetries, which may lie beyond the framework of topological holography (SymTFT).
Related papers
- Gauge theory and mixed state criticality [0.0]
In mixed quantum states, the notion of symmetry is divided into two types: strong and weak symmetry.
We present a way to construct various SSB phases for strong symmetries, starting from the ground state phase diagram of lattice gauge theory models.
arXiv Detail & Related papers (2024-11-07T01:40:56Z) - Exactly solvable models for fermionic symmetry-enriched topological phases and fermionic 't Hooft anomaly [33.49184078479579]
The interplay between symmetry and topological properties plays a very important role in modern physics.
How to realize all these fermionic SET (fSET) phases in lattice models remains to be a difficult open problem.
arXiv Detail & Related papers (2024-10-24T19:52:27Z) - Strong-to-Weak Spontaneous Symmetry Breaking in Mixed Quantum States [10.383582684153945]
We show that a thermal state at a nonzero temperature in the canonical ensemble (with fixed symmetry charge) should have spontaneously broken strong symmetry.
We argue that a thermal state at a nonzero temperature in the canonical ensemble (with fixed symmetry charge) should have spontaneously broken strong symmetry.
arXiv Detail & Related papers (2024-05-06T16:59:01Z) - Three perspectives on entropy dynamics in a non-Hermitian two-state system [41.94295877935867]
entropy dynamics as an indicator of physical behavior in an open two-state system with balanced gain and loss is presented.
We distinguish the perspective taken in utilizing the conventional framework of Hermitian-adjoint states from an approach that is based on biorthogonal-adjoint states and a third case based on an isospectral mapping.
arXiv Detail & Related papers (2024-04-04T14:45:28Z) - Symmetry-restricted quantum circuits are still well-behaved [45.89137831674385]
We show that quantum circuits restricted by a symmetry inherit the properties of the whole special unitary group $SU(2n)$.
It extends prior work on symmetric states to the operators and shows that the operator space follows the same structure as the state space.
arXiv Detail & Related papers (2024-02-26T06:23:39Z) - Edge modes and symmetry-protected topological states in open quantum
systems [0.0]
Topological order offers possibilities for processing quantum information which can be immune to imperfections.
We show robustness of certain aspects of $ZZtimes Z$ symmetry-protected trajectory (SPT) order against a wide class of dissipation channels.
Our work thus proposes a novel framework to study the dynamics of dissipative SPT phases.
arXiv Detail & Related papers (2023-10-13T21:09:52Z) - Emergence of non-Abelian SU(2) invariance in Abelian frustrated
fermionic ladders [37.69303106863453]
We consider a system of interacting spinless fermions on a two-leg triangular ladder with $pi/2$ magnetic flux per triangular plaquette.
Microscopically, the system exhibits a U(1) symmetry corresponding to the conservation of total fermionic charge, and a discrete $mathbbZ$ symmetry.
At the intersection of the three phases, the system features a critical point with an emergent SU(2) symmetry.
arXiv Detail & Related papers (2023-05-11T15:57:27Z) - Properties of the non-Hermitian SSH model: role of PT-symmetry [0.0]
The present work addresses the distinction between the topological properties of PT symmetric and non-PT symmetric scenarios.
We study the locus of the exceptional points, the winding numbers, band structures, and explore the breakdown of bulk-boundary correspondence.
arXiv Detail & Related papers (2022-09-28T05:05:52Z) - Noise-resilient Edge Modes on a Chain of Superconducting Qubits [103.93329374521808]
Inherent symmetry of a quantum system may protect its otherwise fragile states.
We implement the one-dimensional kicked Ising model which exhibits non-local Majorana edge modes (MEMs) with $mathbbZ$ parity symmetry.
MEMs are found to be resilient against certain symmetry-breaking noise owing to a prethermalization mechanism.
arXiv Detail & Related papers (2022-04-24T22:34:15Z) - The phase diagram and vortex properties of PT-symmetric non-Hermitian
two-component superfluid [0.0]
We discuss the phase diagram and properties of global vortices in the non-Hermitian parity-time-symmetric relativistic model.
In the long-range limit of two-component Bose-Einstein condensates, the vortices from different condensates experience mutual dissipative dynamics unless their cores overlap precisely.
arXiv Detail & Related papers (2021-05-16T15:30:48Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.