Early Detection of Late Blight Tomato Disease using Histogram Oriented Gradient based Support Vector Machine
- URL: http://arxiv.org/abs/2306.08326v3
- Date: Wed, 24 Jul 2024 06:53:19 GMT
- Title: Early Detection of Late Blight Tomato Disease using Histogram Oriented Gradient based Support Vector Machine
- Authors: Yousef Alhwaiti, Muhammad Ishaq, Muhammad Hameed Siddiqi, Muhammad Waqas, Madallah Alruwaili, Saad Alanazi, Asfandyar Khan, Faheem Khan,
- Abstract summary: This research work propose a novel smart technique for early detection of late blight diseases in tomatoes.
The proposed hybrid algorithm of SVM and HOG has significant potential for the early detection of late blight disease in tomato plants.
- Score: 2.3210922904864955
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The tomato is one of the most important fruits on earth. It plays an important and useful role in the agricultural production of any country. This research propose a novel smart technique for early detection of late blight diseases in tomatoes. This work improve the dataset with an increase in images from the field (the Plant Village dataset) and proposed a hybrid algorithm composed of support vector machines (SVM) and histogram-oriented gradients (HOG) for real-time detection of late blight tomato disease. To propose a HOG-based SVM model for early detection of late blight tomato leaf disease. To check the performance of the proposed model in terms of MSE, accuracy, precision, and recall as compared to Decision Tree and KNN. The integration of advanced technology in agriculture has the potential to revolutionize the industry, making it more efficient, sustainable, and profitable. This research work on the early detection of tomato diseases contributes to the growing importance of smart farming, the need for climate-smart agriculture, the rising need to more efficiently utilize natural resources, and the demand for higher crop yields. The proposed hybrid algorithm of SVM and HOG has significant potential for the early detection of late blight disease in tomato plants. The performance of the proposed model against decision tree and KNN algorithms and the results may assist in selecting the best algorithm for future applications. The research work can help farmers make data-driven decisions to optimize crop yield and quality while also reducing the environmental impact of farming practices.
Related papers
- Advancing Cucumber Disease Detection in Agriculture through Machine Vision and Drone Technology [0.0]
This study uses machine vision and drone technologies to propose a unique method for the diagnosis of cucumber disease in agriculture.
The backbone of this research is a painstakingly curated dataset of hyperspectral photographs acquired under genuine field conditions.
The model achieves an excellent 87.5% accuracy in distinguishing eight unique cucumber illnesses.
arXiv Detail & Related papers (2024-09-18T22:54:23Z) - Optimizing Resource Consumption in Diffusion Models through Hallucination Early Detection [87.22082662250999]
We introduce HEaD (Hallucination Early Detection), a new paradigm designed to swiftly detect incorrect generations at the beginning of the diffusion process.
We demonstrate that using HEaD saves computational resources and accelerates the generation process to get a complete image.
Our findings reveal that HEaD can save up to 12% of the generation time on a two objects scenario.
arXiv Detail & Related papers (2024-09-16T18:00:00Z) - Enhancing Plant Disease Detection: A Novel CNN-Based Approach with Tensor Subspace Learning and HOWSVD-MD [3.285994579445155]
This paper introduces a cutting-edge technique for the detection and classification of tomato leaf diseases.
We propose a sophisticated approach within the domain of subspace learning, known as Higher-Order Whitened Singular Value Decomposition.
The efficacy of this innovative method was rigorously tested through comprehensive experiments on two distinct datasets.
arXiv Detail & Related papers (2024-05-30T13:46:56Z) - Early and Accurate Detection of Tomato Leaf Diseases Using TomFormer [0.3169023552218211]
This paper introduces a transformer-based model called TomFormer for the purpose of tomato leaf disease detection.
We present a novel approach for detecting tomato leaf diseases by employing a fusion model that combines a visual transformer and a convolutional neural network.
arXiv Detail & Related papers (2023-12-26T20:47:23Z) - Crop Disease Classification using Support Vector Machines with Green
Chromatic Coordinate (GCC) and Attention based feature extraction for IoT
based Smart Agricultural Applications [0.0]
Plant diseases can negatively affect leaves during agricultural cultivation, resulting in significant losses in crop output and economic value.
Various machine learning (ML) as well as deep learning (DL) algorithms have been created & studied for the identification of plant disease detection.
This article presents a novel classification method that builds on prior work by utilising attention-based feature extraction, RGB channel-based chromatic analysis, Support Vector Machines (SVM) for improved performance.
arXiv Detail & Related papers (2023-11-01T10:44:49Z) - Agave crop segmentation and maturity classification with deep learning
data-centric strategies using very high-resolution satellite imagery [101.18253437732933]
We present an Agave tequilana Weber azul crop segmentation and maturity classification using very high resolution satellite imagery.
We solve real-world deep learning problems in the very specific context of agave crop segmentation.
With the resulting accurate models, agave production forecasting can be made available for large regions.
arXiv Detail & Related papers (2023-03-21T03:15:29Z) - Evaluation of the potential of Near Infrared Hyperspectral Imaging for
monitoring the invasive brown marmorated stink bug [53.682955739083056]
The brown marmorated stink bug (BMSB), Halyomorpha halys, is an invasive insect pest of global importance that damages several crops.
The present study consists in a preliminary evaluation at the laboratory level of Near Infrared Hyperspectral Imaging (NIR-HSI) as a possible technology to detect BMSB specimens.
arXiv Detail & Related papers (2023-01-19T11:37:20Z) - Automated Wheat Disease Detection using a ROS-based Autonomous Guided
UAV [0.0]
A smart autonomous system has been implemented on an unmanned aerial vehicle to automate the task of monitoring wheat fields.
An image-based deep learning approach is used to detect and classify disease-infected wheat plants.
A mapping and navigation system is presented using a simulation in the robot operating system and Gazebo environments.
arXiv Detail & Related papers (2022-06-30T06:12:48Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
This paper presents a deep learning approach to automatically recognize powdery mildew on cucumber leaves.
We focus on unsupervised deep learning techniques applied to multispectral imaging data.
We propose the use of autoencoder architectures to investigate two strategies for disease detection.
arXiv Detail & Related papers (2021-12-20T13:29:13Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
The paper presents an approach for analyzing aerial images of a potato crop using deep neural networks.
The main objective is to demonstrate automated spatial recognition of a healthy versus stressed crop at a plant level.
Experimental validation demonstrated the ability for distinguishing healthy and stressed plants in field images, achieving an average Dice coefficient of 0.74.
arXiv Detail & Related papers (2021-06-14T21:57:40Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
We take advantage of all parallel developments in mechanistic modeling and satellite data availability for advanced monitoring of crop productivity.
Our model successfully estimates gross primary productivity across a variety of C3 crop types and environmental conditions even though it does not use any local information from the corresponding sites.
This highlights its potential to map crop productivity from new satellite sensors at a global scale with the help of current Earth observation cloud computing platforms.
arXiv Detail & Related papers (2020-12-07T16:23:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.