Optimized Custom CNN for Real-Time Tomato Leaf Disease Detection
- URL: http://arxiv.org/abs/2502.18521v1
- Date: Sun, 23 Feb 2025 18:27:08 GMT
- Title: Optimized Custom CNN for Real-Time Tomato Leaf Disease Detection
- Authors: Mangsura Kabir Oni, Tabia Tanzin Prama,
- Abstract summary: In Bangladesh, tomatoes are a staple vegetable, prized for their versatility in various culinary applications.<n>Early detection of diseases is crucial for implementing timely interventions and ensuring the sustainability of tomato production.<n>Traditional manual inspection methods, while effective, are labor-intensive and prone to human error.<n>This research paper sought to develop an automated disease detection system using Convolutional Neural Networks (CNNs)
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In Bangladesh, tomatoes are a staple vegetable, prized for their versatility in various culinary applications. However, the cultivation of tomatoes is often hindered by a range of diseases that can significantly reduce crop yields and quality. Early detection of these diseases is crucial for implementing timely interventions and ensuring the sustainability of tomato production. Traditional manual inspection methods, while effective, are labor-intensive and prone to human error. To address these challenges, this research paper sought to develop an automated disease detection system using Convolutional Neural Networks (CNNs). A comprehensive dataset of tomato leaves was collected from the Brahmanbaria district, preprocessed to enhance image quality, and then applied to various deep learning models. Comparative performance analysis was conducted between YOLOv5, MobileNetV2, ResNet18, and our custom CNN model. In our study, the Custom CNN model achieved an impressive accuracy of 95.2%, significantly outperforming the other models, which achieved an accuracy of 77%, 89.38% and 71.88% respectively. While other models showed solid performance, our Custom CNN demonstrated superior results specifically tailored for the task of tomato leaf disease detection. These findings highlight the strong potential of deep learning techniques for improving early disease detection in tomato crops. By leveraging these advanced technologies, farmers can gain valuable insights to detect diseases at an early stage, allowing for more effective management practices. This approach not only promises to boost tomato yields but also contributes to the sustainability and resilience of the agricultural sector, helping to mitigate the impact of plant diseases on crop production.
Related papers
- Urinary Tract Infection Detection in Digital Remote Monitoring: Strategies for Managing Participant-Specific Prediction Complexity [43.108040967674185]
Urinary tract infections (UTIs) are a significant health concern, particularly for people living with dementia (PLWD)<n>This study builds on previous work that utilised machine learning (ML) to detect UTIs in PLWD.
arXiv Detail & Related papers (2025-02-18T12:01:55Z) - Aggrotech: Leveraging Deep Learning for Sustainable Tomato Disease Management [0.0]
We propose a deep learning-based approach for Tomato Leaf Disease Detection using two well-established convolutional neural networks (CNNs)<n>The research employs VGG19 and Inception v3 models on the Tomato Villages dataset (4525 images) for tomato leaf disease detection.<n>The models' accuracy of 93.93% with dropout layers demonstrates their usefulness for crop health monitoring.
arXiv Detail & Related papers (2025-01-21T11:25:44Z) - Automated Disease Diagnosis in Pumpkin Plants Using Advanced CNN Models [0.0]
Pumpkin is a vital crop cultivated globally, and its productivity is crucial for food security, especially in developing regions.
Recent advancements in machine learning and deep learning offer promising solutions for automating and improving the accuracy of plant disease detection.
This paper presents a comprehensive analysis of state-of-the-art Convolutional Neural Network (CNN) models for classifying diseases in pumpkin plant leaves.
arXiv Detail & Related papers (2024-09-29T14:31:23Z) - MedDet: Generative Adversarial Distillation for Efficient Cervical Disc Herniation Detection [24.833129797776422]
Cervical disc herniation (CDH) is a prevalent musculoskeletal disorder that requires labor-intensive analysis from experts.
Despite advancements in automated detection of medical imaging, two significant challenges hinder the real-time application of these methods.
We introduce MedDet, which leverages the multi-teacher single-student knowledge distillation for model compression and efficiency.
Lastly, we conduct comprehensive experiments on the CDH-1848 dataset, achieving up to a 5% improvement in mAP compared to previous methods.
arXiv Detail & Related papers (2024-08-30T18:38:19Z) - Early Detection of Coffee Leaf Rust Through Convolutional Neural Networks Trained on Low-Resolution Images [27.195033353775006]
Coffee leaf rust, a foliar disease caused by the fungus Hemileia vastatrix, poses a major threat to coffee production.
Deep learning models for enhancing early disease detection require extensive processing power and large amounts of data.
We propose a preprocessing technique that involves convolving training images with a high-pass filter to enhance lesion-leaf contrast.
arXiv Detail & Related papers (2024-07-20T03:24:25Z) - Enhancing Plant Disease Detection: A Novel CNN-Based Approach with Tensor Subspace Learning and HOWSVD-MD [3.285994579445155]
This paper introduces a cutting-edge technique for the detection and classification of tomato leaf diseases.
We propose a sophisticated approach within the domain of subspace learning, known as Higher-Order Whitened Singular Value Decomposition.
The efficacy of this innovative method was rigorously tested through comprehensive experiments on two distinct datasets.
arXiv Detail & Related papers (2024-05-30T13:46:56Z) - Early and Accurate Detection of Tomato Leaf Diseases Using TomFormer [0.3169023552218211]
This paper introduces a transformer-based model called TomFormer for the purpose of tomato leaf disease detection.
We present a novel approach for detecting tomato leaf diseases by employing a fusion model that combines a visual transformer and a convolutional neural network.
arXiv Detail & Related papers (2023-12-26T20:47:23Z) - BonnBeetClouds3D: A Dataset Towards Point Cloud-based Organ-level
Phenotyping of Sugar Beet Plants under Field Conditions [30.27773980916216]
Agricultural production is facing severe challenges in the next decades induced by climate change and the need for sustainability.
Advancements in field management through non-chemical weeding by robots in combination with monitoring of crops by autonomous unmanned aerial vehicles (UAVs) are helpful to address these challenges.
The analysis of plant traits, called phenotyping, is an essential activity in plant breeding, it however involves a great amount of manual labor.
arXiv Detail & Related papers (2023-12-22T14:06:44Z) - Early Detection of Late Blight Tomato Disease using Histogram Oriented Gradient based Support Vector Machine [2.3210922904864955]
This research work propose a novel smart technique for early detection of late blight diseases in tomatoes.
The proposed hybrid algorithm of SVM and HOG has significant potential for the early detection of late blight disease in tomato plants.
arXiv Detail & Related papers (2023-06-14T07:58:14Z) - Agave crop segmentation and maturity classification with deep learning
data-centric strategies using very high-resolution satellite imagery [101.18253437732933]
We present an Agave tequilana Weber azul crop segmentation and maturity classification using very high resolution satellite imagery.
We solve real-world deep learning problems in the very specific context of agave crop segmentation.
With the resulting accurate models, agave production forecasting can be made available for large regions.
arXiv Detail & Related papers (2023-03-21T03:15:29Z) - One-Shot Learning with Triplet Loss for Vegetation Classification Tasks [45.82374977939355]
Triplet loss function is one of the options that can significantly improve the accuracy of the One-shot Learning tasks.
Starting from 2015, many projects use Siamese networks and this kind of loss for face recognition and object classification.
arXiv Detail & Related papers (2020-12-14T10:44:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.