論文の概要: Fast and Private Inference of Deep Neural Networks by Co-designing Activation Functions
- arxiv url: http://arxiv.org/abs/2306.08538v2
- Date: Tue, 16 Apr 2024 16:48:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-18 02:30:42.215032
- Title: Fast and Private Inference of Deep Neural Networks by Co-designing Activation Functions
- Title(参考訳): 活性化関数の共設計によるディープニューラルネットワークの高速・プライベート推論
- Authors: Abdulrahman Diaa, Lucas Fenaux, Thomas Humphries, Marian Dietz, Faezeh Ebrahimianghazani, Bailey Kacsmar, Xinda Li, Nils Lukas, Rasoul Akhavan Mahdavi, Simon Oya, Ehsan Amjadian, Florian Kerschbaum,
- Abstract要約: 現在のアプローチは大きな推論時間に悩まされている。
推論モデルと精度を競合させる新しいトレーニングアルゴリズムを提案する。
我々の評価では、最大2300万のパラメータを持つ大規模モデルにおいて、推論時間の3ドルから110倍のスピードアップが示されています。
- 参考スコア(独自算出の注目度): 26.125340303868335
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine Learning as a Service (MLaaS) is an increasingly popular design where a company with abundant computing resources trains a deep neural network and offers query access for tasks like image classification. The challenge with this design is that MLaaS requires the client to reveal their potentially sensitive queries to the company hosting the model. Multi-party computation (MPC) protects the client's data by allowing encrypted inferences. However, current approaches suffer from prohibitively large inference times. The inference time bottleneck in MPC is the evaluation of non-linear layers such as ReLU activation functions. Motivated by the success of previous work co-designing machine learning and MPC, we develop an activation function co-design. We replace all ReLUs with a polynomial approximation and evaluate them with single-round MPC protocols, which give state-of-the-art inference times in wide-area networks. Furthermore, to address the accuracy issues previously encountered with polynomial activations, we propose a novel training algorithm that gives accuracy competitive with plaintext models. Our evaluation shows between $3$ and $110\times$ speedups in inference time on large models with up to $23$ million parameters while maintaining competitive inference accuracy.
- Abstract(参考訳): マシンラーニング・アズ・ア・サービス(MLaaS)は、豊富なコンピューティングリソースを持つ企業がディープニューラルネットワークをトレーニングし、画像分類などのタスクに対してクエリアクセスを提供するという、ますますポピュラーなデザインである。
この設計の課題は、MLaaSが顧客に対して、モデルをホストしている会社に対して、潜在的にセンシティブなクエリを明らかにすることを要求することだ。
マルチパーティ計算(MPC)は、暗号化された推論を許すことでクライアントのデータを保護する。
しかし、現在のアプローチは、非常に大きな推論時間に悩まされている。
MPCにおける推定時間ボトルネックは、ReLUアクティベーション関数のような非線形層の評価である。
従来の機械学習とMPCの協調設計の成功に触発されて,アクティベーション関数の共同設計を開発した。
我々は全てのReLUを多項式近似に置き換え、それらを単一ラウンドのMPCプロトコルで評価し、広域ネットワークにおける最先端の推論時間を与える。
さらに,以前に多項式アクティベーションで遭遇した精度問題に対処するために,平文モデルと競合する精度のトレーニングアルゴリズムを提案する。
我々の評価では、最大2300万ドルのパラメータを持つ大型モデル上での推論時間の高速化と、競合推論の精度を維持しながら、$3~$10\times$110\timesのスピードアップが示されています。
関連論文リスト
- Edge Intelligence Optimization for Large Language Model Inference with Batching and Quantization [20.631476379056892]
大規模言語モデル(LLM)がこの運動の最前線にある。
LLMはクラウドホスティングを必要とするため、プライバシやレイテンシ、使用制限に関する問題が発生する。
LLM推論に適したエッジインテリジェンス最適化問題を提案する。
論文 参考訳(メタデータ) (2024-05-12T02:38:58Z) - An Incentive Mechanism for Federated Learning Based on Multiple Resource
Exchange [5.385462087305977]
Federated Learning(FL)は、機械学習におけるプライバシー問題に対処する分散機械学習パラダイムである。
ユーザをモデルオーナ(MO)とデータオーナ(DO)の2つの役割に分類する。
提案した協調計算フレームワークは、FLタスクの完了までの全体の時間を最小化しつつ、95%以上の精度を達成可能であることを示す。
論文 参考訳(メタデータ) (2023-12-13T12:28:37Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
共有バックボーンと複数の予測ヘッド(PH)を組み合わせたマルチヘッドマルチタスク学習(MEMTL)手法を提案する。
MEMTLは、追加のトレーニングデータを必要とせず、推測精度と平均平方誤差の両方でベンチマーク手法より優れている。
論文 参考訳(メタデータ) (2023-09-02T11:01:16Z) - Towards Model-Size Agnostic, Compute-Free, Memorization-based Inference
of Deep Learning [5.41530201129053]
本稿では,新しい暗記ベース推論(MBI)を提案する。
具体的には、リカレント・アテンション・モデル(RAM)の推論機構に着目します。
低次元のスリープ性を活用することで、我々の推論手順は、スリープ位置、パッチベクトルなどからなるキー値対をテーブルに格納する。
計算は、テーブルを利用してキーと値のペアを読み出し、暗記による計算自由推論を実行することにより、推論中に妨げられる。
論文 参考訳(メタデータ) (2023-07-14T21:01:59Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
そこで本研究では,汎用的な渋滞制御(CC)アルゴリズムを設計するための新しい強化学習(RL)手法を提案する。
我々の解であるMARLINは、Soft Actor-Criticアルゴリズムを用いてエントロピーとリターンの両方を最大化する。
我々は,MARLINを実ネットワーク上で訓練し,実ミスマッチを克服した。
論文 参考訳(メタデータ) (2023-02-02T18:27:20Z) - Partitioning Distributed Compute Jobs with Reinforcement Learning and
Graph Neural Networks [58.720142291102135]
大規模な機械学習モデルは、幅広い分野に進歩をもたらしている。
これらのモデルの多くは、単一のマシンでトレーニングするには大きすぎるため、複数のデバイスに分散する必要がある。
スループットやブロッキングレートといったユーザクリティカルな指標に対して,並列化の最大化が準最適であることを示す。
論文 参考訳(メタデータ) (2023-01-31T17:41:07Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
高次元パラメータモデルと大規模数学的計算は、特にIoT(Internet of Things)デバイスにおける実行効率を制限する。
本稿では,ソフトポリシーの繰り返しによるエフェキシット点,エフェキシット点,エンフェキシット点を生成する離散的(SAC-d)のための新しい深層強化学習(DRL)-ソフトアクタ批判法を提案する。
レイテンシと精度を意識した報酬設計に基づいて、そのような計算は動的無線チャンネルや任意の処理のような複雑な環境によく適応でき、5G URLをサポートすることができる。
論文 参考訳(メタデータ) (2022-01-09T09:31:50Z) - Offloading Algorithms for Maximizing Inference Accuracy on Edge Device
Under a Time Constraint [15.038891477389535]
近似アルゴリズム AMR2 を提案し,最大 2T でメイスパンが得られることを示す。
概念実証として,MobileNetを搭載したRaspberry PiにAMR2を実装し,ResNetを搭載したサーバに接続し,画像分類用AMR2の総合的精度とメースパン性能について検討した。
論文 参考訳(メタデータ) (2021-12-21T18:21:24Z) - HD-cos Networks: Efficient Neural Architectures for Secure Multi-Party
Computation [26.67099154998755]
マルチパーティ計算(MPC、Multi-party calculation)は、暗号化の分野の一つで、複数の非解決パーティが関数を安全に計算するためのプロトコルを実行する。
MPC設定下でニューラルネットワークのトレーニングと推論について検討する。
どちらの手法も、MPC設定下での強力な理論的モチベーションと効率的な計算を享受できることを示す。
論文 参考訳(メタデータ) (2021-10-28T21:15:11Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning(FL)は、分散クライアント間で効果的な機械学習モデルをトレーニングするための有望なツールとなっている。
しかし、低品質のモデルは信頼性の低いクライアントによってアグリゲータサーバにアップロードすることができ、劣化やトレーニングの崩壊につながる。
クライアントの信頼できない振る舞いをモデル化し、このようなセキュリティリスクを軽減するための防御メカニズムを提案する。
論文 参考訳(メタデータ) (2021-05-10T08:02:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。