論文の概要: Kernel Debiased Plug-in Estimation: Simultaneous, Automated Debiasing without Influence Functions for Many Target Parameters
- arxiv url: http://arxiv.org/abs/2306.08598v4
- Date: Thu, 4 Apr 2024 03:41:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-05 20:42:13.162490
- Title: Kernel Debiased Plug-in Estimation: Simultaneous, Automated Debiasing without Influence Functions for Many Target Parameters
- Title(参考訳): Kernel Debiased Plug-in Estimation: 多数のターゲットパラメータに対する影響関数を伴わない同時自動デバイアス
- Authors: Brian Cho, Yaroslav Mukhin, Kyra Gan, Ivana Malenica,
- Abstract要約: カーネル・デバイアスド・プラグイン推定(KDPE)という新しい手法を提案する。
KDPEは、我々の規則性条件を満たす全ての微分可能なターゲットパラメータを同時に分離する。
我々は、KDPEの使用法を数値的に説明し、理論結果を検証した。
- 参考スコア(独自算出の注目度): 1.5999407512883512
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the problem of estimating target parameters in nonparametric models with nuisance parameters, substituting the unknown nuisances with nonparametric estimators can introduce "plug-in bias." Traditional methods addressing this sub-optimal bias-variance trade-offs rely on the influence function (IF) of the target parameter. When estimating multiple target parameters, these methods require debiasing the nuisance parameter multiple times using the corresponding IFs, posing analytical and computational challenges. In this work, we leverage the targeted maximum likelihood estimation framework to propose a novel method named kernel debiased plug-in estimation (KDPE). KDPE refines an initial estimate through regularized likelihood maximization steps, employing a nonparametric model based on reproducing kernel Hilbert spaces. We show that KDPE (i) simultaneously debiases all pathwise differentiable target parameters that satisfy our regularity conditions, (ii) does not require the IF for implementation, and (iii) remains computationally tractable. We numerically illustrate the use of KDPE and validate our theoretical results.
- Abstract(参考訳): 非パラメトリックモデルにおけるターゲットパラメータをニュアンスパラメータで推定する問題では、未知のニュアンスを非パラメトリック推定器で置換することで、「プラグインバイアス」を導入することができる。
この準最適バイアス分散トレードオフに対処する従来の手法は、対象パラメータの影響関数(IF)に依存している。
複数の対象パラメータを推定する場合、これらの手法は対応するIFを用いて複数のニュアンスパラメータをデバイアスし、解析的および計算的課題を提起する。
本研究では,カーネル・デバイアスド・プラグイン推定(KDPE)という新しい手法を提案する。
KDPEは、再現されたカーネルヒルベルト空間に基づいた非パラメトリックモデルを用いて、正規化された極大化ステップを通じて初期推定を洗練する。
我々は、KDPEが
i) 規則性条件を満たす全ての経路微分可能なターゲットパラメータを同時に分離する。
(ii)実装にIFを必要とせず、
(iii)計算能力は保たれている。
我々は、KDPEの使用法を数値的に説明し、理論結果を検証した。
関連論文リスト
- Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
我々は、パラメトリックな$sqrt n $-rateで収束する、最も近い隣人の新しい修正とマッチング推定器を開発する。
我々は,非パラメトリック関数推定器は含まないこと,特に標本サイズ依存パラメータの平滑化には依存していないことを強調する。
論文 参考訳(メタデータ) (2024-07-11T13:28:34Z) - Scaling Exponents Across Parameterizations and Optimizers [94.54718325264218]
本稿では,先行研究における重要な仮定を考察し,パラメータ化の新たな視点を提案する。
私たちの経験的調査には、3つの組み合わせでトレーニングされた数万のモデルが含まれています。
最高の学習率のスケーリング基準は、以前の作業の仮定から除外されることがよくあります。
論文 参考訳(メタデータ) (2024-07-08T12:32:51Z) - Stochastic Marginal Likelihood Gradients using Neural Tangent Kernels [78.6096486885658]
線形化されたラプラス近似に下界を導入する。
これらの境界は漸進的な最適化が可能であり、推定精度と計算複雑性とのトレードオフを可能にする。
論文 参考訳(メタデータ) (2023-06-06T19:02:57Z) - Efficient Sensitivity Analysis for Parametric Robust Markov Chains [23.870902923521335]
本稿では,ロバストマルコフ鎖の感度解析法を提案する。
我々は、不確実な遷移確率に関する偏微分の観点から感度を測定する。
得られた結果を、専用感度分析へのアクセスから利益を得る反復学習方式に組み込む。
論文 参考訳(メタデータ) (2023-05-01T08:23:55Z) - Optimization of Annealed Importance Sampling Hyperparameters [77.34726150561087]
Annealed Importance Smpling (AIS) は、深層生成モデルの難易度を推定するために使われる一般的なアルゴリズムである。
本稿では、フレキシブルな中間分布を持つパラメータAISプロセスを提案し、サンプリングに少ないステップを使用するようにブリッジング分布を最適化する。
我々は, 最適化AISの性能評価を行い, 深部生成モデルの限界推定を行い, 他の推定値と比較した。
論文 参考訳(メタデータ) (2022-09-27T07:58:25Z) - Regularized Nonlinear Regression for Simultaneously Selecting and
Estimating Key Model Parameters [1.6122433144430324]
システム同定では、限られた観測値を用いてモデルのパラメータを推定すると、識別性が低下する。
感度パラメータをキーモデルパラメータとして同時に選択および推定し、残りのパラメータを典型的な値の集合に固定する新しい方法を提案する。
論文 参考訳(メタデータ) (2021-04-23T06:17:57Z) - Online Parameter Estimation for Safety-Critical Systems with Gaussian
Processes [6.122161391301866]
オンラインパラメータ推定のためのガウス過程(GP)に基づくベイズ最適化フレームワークを提案する。
パラメータ空間の応答面上の効率的な探索戦略を用いて、最小限の機能評価で大域最適解を求める。
我々は,パラメータの変化を考慮したシミュレーションにおいて,アクティベートされた平面振子と安全臨界振子について実演する。
論文 参考訳(メタデータ) (2020-02-18T20:38:00Z) - Support recovery and sup-norm convergence rates for sparse pivotal
estimation [79.13844065776928]
高次元スパース回帰では、ピボット推定器は最適な正規化パラメータがノイズレベルに依存しない推定器である。
非滑らかで滑らかな単一タスクとマルチタスク正方形ラッソ型推定器に対するミニマックス超ノルム収束率を示す。
論文 参考訳(メタデータ) (2020-01-15T16:11:04Z) - Orthogonal Statistical Learning [49.55515683387805]
人口リスクが未知のニュアンスパラメータに依存するような環境では,統計学習における非漸近的過剰リスク保証を提供する。
人口リスクがNeymanityと呼ばれる条件を満たす場合,メタアルゴリズムによって達成される過剰リスクに対するニュアンス推定誤差の影響は2次であることを示す。
論文 参考訳(メタデータ) (2019-01-25T02:21:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。