WavPool: A New Block for Deep Neural Networks
- URL: http://arxiv.org/abs/2306.08734v1
- Date: Wed, 14 Jun 2023 20:35:01 GMT
- Title: WavPool: A New Block for Deep Neural Networks
- Authors: Samuel D. McDermott, M. Voetberg, Brian Nord
- Abstract summary: We introduce a new, wavelet-transform-based network architecture that we call the multi-resolution perceptron.
By adding a pooling layer, we create a new network block, the WavPool.
WavPool outperforms a similar multilayer perceptron while using fewer parameters, and outperforms a comparable convolutional neural network by 10% on relative accuracy on CIFAR-10.
- Score: 2.2311710049695446
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern deep neural networks comprise many operational layers, such as dense
or convolutional layers, which are often collected into blocks. In this work,
we introduce a new, wavelet-transform-based network architecture that we call
the multi-resolution perceptron: by adding a pooling layer, we create a new
network block, the WavPool. The first step of the multi-resolution perceptron
is transforming the data into its multi-resolution decomposition form by
convolving the input data with filters of fixed coefficients but increasing
size. Following image processing techniques, we are able to make scale and
spatial information simultaneously accessible to the network without increasing
the size of the data vector. WavPool outperforms a similar multilayer
perceptron while using fewer parameters, and outperforms a comparable
convolutional neural network by ~ 10% on relative accuracy on CIFAR-10.
Related papers
- WiNet: Wavelet-based Incremental Learning for Efficient Medical Image Registration [68.25711405944239]
Deep image registration has demonstrated exceptional accuracy and fast inference.
Recent advances have adopted either multiple cascades or pyramid architectures to estimate dense deformation fields in a coarse-to-fine manner.
We introduce a model-driven WiNet that incrementally estimates scale-wise wavelet coefficients for the displacement/velocity field across various scales.
arXiv Detail & Related papers (2024-07-18T11:51:01Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
We present a novel two-stream feature fusion "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) architecture.
To better learn the meaningful patterns in the temporal-spatial domain, we design a "CT" stream that integrates a hybrid convolutional-transformer.
In parallel, to efficiently extract rich patterns from the temporal-frequency domain, we introduce a "TC" stream that uses Continuous Wavelet Transform (CWT) to represent information in a 2D tensor form.
arXiv Detail & Related papers (2024-04-15T06:01:48Z) - Mixed-TD: Efficient Neural Network Accelerator with Layer-Specific
Tensor Decomposition [7.221206118679026]
We propose a framework for mapping CNNs onto FPGAs based on a novel tensor decomposition method called Mixed-TD.
The proposed method applies layer-specific Singular Value Decomposition (SVD) and Canonical Polyadic Decomposition (CPD) in a mixed manner, achieving 1.73x to 10.29x throughput per DSP to state-of-the-art CNNs.
arXiv Detail & Related papers (2023-06-08T08:16:38Z) - Sequence Modeling with Multiresolution Convolutional Memory [27.218134279968062]
We build a new building block for sequence modeling called a MultiresLayer.
The key component of our model is the multiresolution convolution, capturing multiscale trends in the input sequence.
Our model yields state-of-the-art performance on a number of sequence classification and autoregressive density estimation tasks.
arXiv Detail & Related papers (2023-05-02T17:50:54Z) - Learning with Multigraph Convolutional Filters [153.20329791008095]
We introduce multigraph convolutional neural networks (MGNNs) as stacked and layered structures where information is processed according to an MSP model.
We also develop a procedure for tractable computation of filter coefficients in the MGNNs and a low cost method to reduce the dimensionality of the information transferred between layers.
arXiv Detail & Related papers (2022-10-28T17:00:50Z) - Instant Neural Graphics Primitives with a Multiresolution Hash Encoding [67.33850633281803]
We present a versatile new input encoding that permits the use of a smaller network without sacrificing quality.
A small neural network is augmented by a multiresolution hash table of trainable feature vectors whose values are optimized through a gradient descent.
We achieve a combined speed of several orders of magnitude, enabling training of high-quality neural graphics primitives in a matter of seconds.
arXiv Detail & Related papers (2022-01-16T07:22:47Z) - Point-Cloud Deep Learning of Porous Media for Permeability Prediction [0.0]
We propose a novel deep learning framework for predicting permeability of porous media from their digital images.
We model the boundary between solid matrix and pore spaces as point clouds and feed them as inputs to a neural network based on the PointNet architecture.
arXiv Detail & Related papers (2021-07-18T22:59:21Z) - Wide-band butterfly network: stable and efficient inversion via
multi-frequency neural networks [1.2891210250935143]
We introduce an end-to-end deep learning architecture called the wide-band butterfly network (WideBNet) for approximating the inverse scattering map from wide-band scattering data.
This architecture incorporates tools from computational harmonic analysis, such as the butterfly factorization, and traditional multi-scale methods, such as the Cooley-Tukey FFT algorithm.
arXiv Detail & Related papers (2020-11-24T21:48:43Z) - A Greedy Algorithm for Quantizing Neural Networks [4.683806391173103]
We propose a new computationally efficient method for quantizing the weights of pre- trained neural networks.
Our method deterministically quantizes layers in an iterative fashion with no complicated re-training required.
arXiv Detail & Related papers (2020-10-29T22:53:10Z) - Dynamic Graph: Learning Instance-aware Connectivity for Neural Networks [78.65792427542672]
Dynamic Graph Network (DG-Net) is a complete directed acyclic graph, where the nodes represent convolutional blocks and the edges represent connection paths.
Instead of using the same path of the network, DG-Net aggregates features dynamically in each node, which allows the network to have more representation ability.
arXiv Detail & Related papers (2020-10-02T16:50:26Z) - Channel-Level Variable Quantization Network for Deep Image Compression [50.3174629451739]
We propose a channel-level variable quantization network to dynamically allocate more convolutions for significant channels and withdraws for negligible channels.
Our method achieves superior performance and can produce much better visual reconstructions.
arXiv Detail & Related papers (2020-07-15T07:20:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.