A Comparison of Self-Supervised Pretraining Approaches for Predicting
Disease Risk from Chest Radiograph Images
- URL: http://arxiv.org/abs/2306.08955v1
- Date: Thu, 15 Jun 2023 08:48:14 GMT
- Title: A Comparison of Self-Supervised Pretraining Approaches for Predicting
Disease Risk from Chest Radiograph Images
- Authors: Yanru Chen, Michael T Lu, Vineet K Raghu
- Abstract summary: We present a comparison of semi- and self-supervised learning to predict mortality risk using chest x-ray images.
We find that a semi-supervised autoencoder outperforms contrastive and transfer learning in internal and external validation.
- Score: 3.5880535198436156
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning is the state-of-the-art for medical imaging tasks, but requires
large, labeled datasets. For risk prediction, large datasets are rare since
they require both imaging and follow-up (e.g., diagnosis codes). However, the
release of publicly available imaging data with diagnostic labels presents an
opportunity for self and semi-supervised approaches to improve label efficiency
for risk prediction. Though several studies have compared self-supervised
approaches in natural image classification, object detection, and medical image
interpretation, there is limited data on which approaches learn robust
representations for risk prediction. We present a comparison of semi- and
self-supervised learning to predict mortality risk using chest x-ray images. We
find that a semi-supervised autoencoder outperforms contrastive and transfer
learning in internal and external validation.
Related papers
- Significantly improving zero-shot X-ray pathology classification via fine-tuning pre-trained image-text encoders [50.689585476660554]
We propose a new fine-tuning strategy that includes positive-pair loss relaxation and random sentence sampling.
Our approach consistently improves overall zero-shot pathology classification across four chest X-ray datasets and three pre-trained models.
arXiv Detail & Related papers (2022-12-14T06:04:18Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Self-Supervised-RCNN for Medical Image Segmentation with Limited Data
Annotation [0.16490701092527607]
We propose an alternative deep learning training strategy based on self-supervised pretraining on unlabeled MRI scans.
Our pretraining approach first, randomly applies different distortions to random areas of unlabeled images and then predicts the type of distortions and loss of information.
The effectiveness of the proposed method for segmentation tasks in different pre-training and fine-tuning scenarios is evaluated.
arXiv Detail & Related papers (2022-07-17T13:28:52Z) - Self-Supervised Learning as a Means To Reduce the Need for Labeled Data
in Medical Image Analysis [64.4093648042484]
We use a dataset of chest X-ray images with bounding box labels for 13 different classes of anomalies.
We show that it is possible to achieve similar performance to a fully supervised model in terms of mean average precision and accuracy with only 60% of the labeled data.
arXiv Detail & Related papers (2022-06-01T09:20:30Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - Constrained Contrastive Distribution Learning for Unsupervised Anomaly
Detection and Localisation in Medical Images [23.79184121052212]
Unsupervised anomaly detection (UAD) learns one-class classifiers exclusively with normal (i.e., healthy) images.
We propose a novel self-supervised representation learning method, called Constrained Contrastive Distribution learning for anomaly detection (CCD)
Our method outperforms current state-of-the-art UAD approaches on three different colonoscopy and fundus screening datasets.
arXiv Detail & Related papers (2021-03-05T01:56:58Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Quantifying and Leveraging Predictive Uncertainty for Medical Image
Assessment [13.330243305948278]
We propose a system that learns not only the probabilistic estimate for classification, but also an explicit uncertainty measure.
We argue that this approach is essential to account for the inherent ambiguity characteristic of medical images from different radiologic exams.
In our experiments we demonstrate that sample rejection based on the predicted uncertainty can significantly improve the ROC-AUC for various tasks.
arXiv Detail & Related papers (2020-07-08T16:47:55Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z) - Unsupervised Anomaly Detection for X-Ray Images [4.353258086186526]
We investigate how unsupervised methods trained on images without anomalies can be used to assist doctors in evaluating X-ray images of hands.
We adopt state-of-the-art approaches for unsupervised learning to detect anomalies and show how the outputs of these methods can be explained.
We provide an extensive evaluation of different approaches and demonstrate empirically that even without labels it is possible to achieve satisfying results on a real-world dataset of X-ray images of hands.
arXiv Detail & Related papers (2020-01-29T15:14:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.