論文の概要: Deep Learning for Energy Time-Series Analysis and Forecasting
- arxiv url: http://arxiv.org/abs/2306.09129v2
- Date: Thu, 29 Jun 2023 08:37:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-30 18:58:00.986105
- Title: Deep Learning for Energy Time-Series Analysis and Forecasting
- Title(参考訳): エネルギー時系列解析と予測のための深層学習
- Authors: Maria Tzelepi, Charalampos Symeonidis, Paraskevi Nousi, Efstratios
Kakaletsis, Theodoros Manousis, Pavlos Tosidis, Nikos Nikolaidis and
Anastasios Tefas
- Abstract要約: エネルギー時系列分析(Energy time-series analysis)は、過去のエネルギー観測とおそらく外的要因を分析し、未来を予測するプロセスを記述する。
広範囲の視覚タスクにおけるDeep Learning(DL)の異常なパフォーマンスに続いて、DLモデルは時系列予測タスクでうまく活用されている。
本稿では,エネルギー時系列予測タスクの性能向上を目的とした多種多様なDL手法について考察する。
- 参考スコア(独自算出の注目度): 42.617834983479796
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Energy time-series analysis describes the process of analyzing past energy
observations and possibly external factors so as to predict the future.
Different tasks are involved in the general field of energy time-series
analysis and forecasting, with electric load demand forecasting, personalized
energy consumption forecasting, as well as renewable energy generation
forecasting being among the most common ones. Following the exceptional
performance of Deep Learning (DL) in a broad area of vision tasks, DL models
have successfully been utilized in time-series forecasting tasks. This paper
aims to provide insight into various DL methods geared towards improving the
performance in energy time-series forecasting tasks, with special emphasis in
Greek Energy Market, and equip the reader with the necessary knowledge to apply
these methods in practice.
- Abstract(参考訳): エネルギー時系列分析(Energy time-series analysis)は、過去のエネルギー観測とおそらく外的要因を分析し、未来を予測するプロセスを記述する。
電力需要予測、パーソナライズされたエネルギー消費予測、再生可能エネルギー発生予測など、エネルギー時系列分析と予測の全般的な分野において、さまざまなタスクが関与している。
広範囲の視覚タスクにおけるDeep Learning(DL)の異常なパフォーマンスに続いて、DLモデルは時系列予測タスクでうまく活用されている。
本稿では,エネルギー時系列予測タスクの性能向上を目的とした多種多様なDL手法について,特にギリシャエネルギー市場に注目し,その実践に必要な知識を読者に提供することを目的とする。
関連論文リスト
- Load and Renewable Energy Forecasting Using Deep Learning for Grid Stability [0.0]
短期的な負荷と再生可能エネルギー予測は、グリッドを安定させ、エネルギー貯蔵を最大化し、再生可能資源の有効利用を保証するのに役立つ。
本稿では,主にCNNとLSTMに基づく予測手法に焦点を当てる。
論文 参考訳(メタデータ) (2025-01-23T06:33:33Z) - From Dense to Sparse: Event Response for Enhanced Residential Load Forecasting [48.22398304557558]
住宅負荷予測のためのイベント応答型知識ガイド手法(ERKG)を提案する。
ERKGは、異なる家電の電力使用状況の推定、負荷系列からのイベント関連スパース知識のマイニングを取り入れている。
論文 参考訳(メタデータ) (2025-01-06T05:53:38Z) - TimeRAF: Retrieval-Augmented Foundation model for Zero-shot Time Series Forecasting [59.702504386429126]
TimeRAFは検索拡張技術によるゼロショット時系列予測を強化する検索拡張予測モデルである。
TimeRAFは、エンド・ツー・エンドの学習可能なレトリバーを使用して、知識ベースから貴重な情報を抽出する。
論文 参考訳(メタデータ) (2024-12-30T09:06:47Z) - Energy Price Modelling: A Comparative Evaluation of four Generations of Forecasting Methods [45.30624270004584]
エネルギー価格予測は様々なレベルで意思決定を支援する上で重要な役割を果たしている。
予測技術の進化の展望を考えると、この文献は徹底的な経験的比較を欠いている。
本稿では,予測モデリングフレームワークの進化を詳細に概観する。
論文 参考訳(メタデータ) (2024-11-05T11:45:00Z) - The Forecastability of Underlying Building Electricity Demand from Time
Series Data [1.3757257689932039]
ビルのエネルギー消費予測は、ビルのエネルギー管理システムにおいて有望な解決策となっている。
建物の将来的なエネルギー需要を予測するデータ駆動のアプローチは、科学文献で見ることができる。
このような建物のエネルギー需要を予測するために利用できる最も正確な予測モデルの同定は依然として困難である。
論文 参考訳(メタデータ) (2023-11-29T20:47:47Z) - Performative Time-Series Forecasting [71.18553214204978]
我々は,機械学習の観点から,パフォーマンス時系列予測(PeTS)を定式化する。
本稿では,予測分布シフトに対する遅延応答の概念を活用する新しい手法であるFeature Performative-Shifting(FPS)を提案する。
新型コロナウイルスの複数の時系列モデルと交通予報タスクを用いた総合的な実験を行った。
論文 参考訳(メタデータ) (2023-10-09T18:34:29Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
エネルギー予測は、電力グリッドディスパッチのようなその後のタスクのコストを最小化することを目的としている。
本稿では,大規模負荷データセットを収集し,再生可能エネルギーデータセットを新たにリリースした。
評価指標の異なるレベルにおいて,21種類の予測手法を用いた広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-07-14T06:50:02Z) - In Search of Deep Learning Architectures for Load Forecasting: A
Comparative Analysis and the Impact of the Covid-19 Pandemic on Model
Performance [0.0]
短期負荷予測(STLF)は、その信頼性、排出、コストの最適化に不可欠である。
この研究は、精度の予測と持続可能性のトレーニングに関して、Deep Learning (DL)アーキテクチャの比較研究を行う。
ケーススタディは、ポルトガルの全国15分解像度ネットロードタイムシリーズの日頭予測に焦点を当てている。
論文 参考訳(メタデータ) (2023-02-25T10:08:23Z) - Deep-Learning-Based, Multi-Timescale Load Forecasting in Buildings:
Opportunities and Challenges from Research to Deployment [0.0]
電力会社は伝統的に、広大な地理的領域にまたがる負荷ポケットの負荷予測を実施してきた。
今後18時間にわたって1時間間隔で建物負荷を予測するディープラーニングに基づく負荷予測システムを提案する。
論文 参考訳(メタデータ) (2020-08-12T17:47:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。