論文の概要: Energy Price Modelling: A Comparative Evaluation of four Generations of Forecasting Methods
- arxiv url: http://arxiv.org/abs/2411.03372v1
- Date: Tue, 05 Nov 2024 11:45:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-07 19:23:02.751300
- Title: Energy Price Modelling: A Comparative Evaluation of four Generations of Forecasting Methods
- Title(参考訳): エネルギー価格モデリング:4世代予測手法の比較評価
- Authors: Alexandru-Victor Andrei, Georg Velev, Filip-Mihai Toma, Daniel Traian Pele, Stefan Lessmann,
- Abstract要約: エネルギー価格予測は様々なレベルで意思決定を支援する上で重要な役割を果たしている。
予測技術の進化の展望を考えると、この文献は徹底的な経験的比較を欠いている。
本稿では,予測モデリングフレームワークの進化を詳細に概観する。
- 参考スコア(独自算出の注目度): 45.30624270004584
- License:
- Abstract: Energy is a critical driver of modern economic systems. Accurate energy price forecasting plays an important role in supporting decision-making at various levels, from operational purchasing decisions at individual business organizations to policy-making. A significant body of literature has looked into energy price forecasting, investigating a wide range of methods to improve accuracy and inform these critical decisions. Given the evolving landscape of forecasting techniques, the literature lacks a thorough empirical comparison that systematically contrasts these methods. This paper provides an in-depth review of the evolution of forecasting modeling frameworks, from well-established econometric models to machine learning methods, early sequence learners such LSTMs, and more recent advancements in deep learning with transformer networks, which represent the cutting edge in forecasting. We offer a detailed review of the related literature and categorize forecasting methodologies into four model families. We also explore emerging concepts like pre-training and transfer learning, which have transformed the analysis of unstructured data and hold significant promise for time series forecasting. We address a gap in the literature by performing a comprehensive empirical analysis on these four family models, using data from the EU energy markets, we conduct a large-scale empirical study, which contrasts the forecasting accuracy of different approaches, focusing especially on alternative propositions for time series transformers.
- Abstract(参考訳): エネルギーは現代の経済システムの重要な原動力である。
正確なエネルギー価格予測は、個々の事業組織における運用上の意思決定決定から政策決定に至るまで、様々なレベルで意思決定を支援する上で重要な役割を担っている。
膨大な量の文献がエネルギー価格予測を調査し、精度を改善し、これらの決定を伝達するための幅広い手法を調査している。
予測技術の進化の展望を考えると、これらの手法を体系的に対比する徹底的な経験的比較は欠如している。
本稿では, 予測モデルから機械学習手法, LSTMなどの早期シーケンス学習者, 予測の最先端を表現したトランスフォーマーネットワークを用いた深層学習など, 予測モデルフレームワークの進化を詳細に概観する。
本稿では,関連文献の詳細なレビューを行い,予測手法を4つのモデルファミリーに分類する。
また,非構造化データの解析を変革し,時系列予測に有意な可能性を秘めている,事前学習や移動学習といった新しい概念についても検討する。
本稿は、EUエネルギー市場のデータを用いて、これら4つの家族モデルに関する総合的な経験的分析を行い、さまざまなアプローチの予測精度を対照的に、特に時系列トランスフォーマーの代替提案に焦点をあてた大規模な経験的研究を行うことにより、文献のギャップを解消する。
関連論文リスト
- Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
コンテキスト・イズ・キー (Context is Key) (CiK) は、時系列予測ベンチマークであり、様々な種類のテキストコンテキストと数値データをペアリングする。
我々は,統計モデル,時系列基礎モデル,LLMに基づく予測モデルなど,さまざまなアプローチを評価する。
実験では、文脈情報の導入の重要性を強調し、LLMに基づく予測モデルを用いた場合の驚くべき性能を示すとともに、それらの重要な欠点を明らかにした。
論文 参考訳(メタデータ) (2024-10-24T17:56:08Z) - See Further for Parameter Efficient Fine-tuning by Standing on the Shoulders of Decomposition [56.87609859444084]
パラメータ効率の細かいチューニング(PEFT)は、パラメータの選択したサブセットを最適化し、残りを固定し、計算とストレージのオーバーヘッドを大幅に削減することに焦点を当てている。
分解の観点からそれらを分離することで、すべてのアプローチを統一する第一歩を踏み出します。
本稿では,PEFT技術の性能向上を目的とした,単純かつ効果的なフレームワークとともに,新しい2つのPEFT手法を提案する。
論文 参考訳(メタデータ) (2024-07-07T15:44:42Z) - FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation [67.20588721130623]
我々は,AIを用いた循環型天気予報システムFengWu-4DVarを開発した。
FengWu-4DVarは観測データをデータ駆動の天気予報モデルに組み込むことができる。
シミュレーションされた観測データセットの実験は、FengWu-4DVarが合理的な解析場を生成することができることを示した。
論文 参考訳(メタデータ) (2023-12-16T02:07:56Z) - Uplift vs. predictive modeling: a theoretical analysis [1.2412255325209152]
本稿では,理論的基礎から始まり,昇降・予測的手法の性能に影響を及ぼすパラメータを明らかにすることから,その主題を包括的に扱うことを提案する。
本論文は,二項帰結事例と二項作用に着目し,古典的予測手法と比較し,昇降モデリングの理論的解析を行った。
論文 参考訳(メタデータ) (2023-09-21T12:59:17Z) - Diffusion-based Visual Counterfactual Explanations -- Towards Systematic
Quantitative Evaluation [64.0476282000118]
視覚的対物的説明法(VCE)の最新手法は、深い生成モデルの力を利用して、印象的な画質の高次元画像の新しい例を合成する。
評価手順が大きく異なり,個々の実例の視覚検査や小規模なユーザスタディなど,これらのVCE手法の性能を比較することは,現時点では困難である。
本稿では,VCE手法の体系的,定量的評価のためのフレームワークと,使用する指標の最小セットを提案する。
論文 参考訳(メタデータ) (2023-08-11T12:22:37Z) - Meta-Regression Analysis of Errors in Short-Term Electricity Load
Forecasting [0.0]
本稿では,短期電力負荷予測の精度に影響を与える要因を考察するメタ回帰分析(MRA)を提案する。
59の研究で公表された421の予測モデルから得られたデータを利用する。
LSTMアプローチとニューラルネットワークと他のアプローチの組み合わせが最高の予測方法であることがわかった。
論文 参考訳(メタデータ) (2023-05-29T18:26:51Z) - Validation Methods for Energy Time Series Scenarios from Deep Generative
Models [55.41644538483948]
一般的なシナリオ生成アプローチでは、データ分散に関する前提なしにシナリオを生成するディープ生成モデル(DGM)を使用する。
エネルギーシナリオ生成文献における現在使われている検証手法の批判的評価を行う。
過去のデータと生成されたデータの両方に4つの検証手法を適用し、検証結果の解釈と、一般的な誤り、落とし穴、検証方法の限界について議論する。
論文 参考訳(メタデータ) (2021-10-27T14:14:25Z) - Energy Forecasting in Smart Grid Systems: A Review of the
State-of-the-art Techniques [2.3436632098950456]
本稿では,スマートグリッド(SG)システムの最先端予測手法について概説する。
統計学,機械学習(ML),深層学習(DL)などの従来の点予測手法について検討した。
ヴィクトリア朝の電力消費とアメリカの電力(AEP)の比較ケーススタディを行った。
論文 参考訳(メタデータ) (2020-11-25T09:17:07Z) - Introduction to Rare-Event Predictive Modeling for Inferential
Statisticians -- A Hands-On Application in the Prediction of Breakthrough
Patents [0.0]
本稿では,予測性能の最適化を目的とした定量的分析のための機械学習(ML)手法を提案する。
両フィールド間の潜在的な相乗効果について考察する。
我々は,コンピュータサイエンスの用語のデミスティフィケーションを目指して,定量的な社会科学の聴衆に手持ちの予測モデルの導入を行っている。
論文 参考訳(メタデータ) (2020-03-30T13:06:25Z) - Profit-oriented sales forecasting: a comparison of forecasting
techniques from a business perspective [3.613072342189595]
本稿では,コカ・コーラ社の産業界データと公開データセットの両方から成る35回連続のテクニックを比較検討する。
モデル構築と評価プロセスの両方において、テクニックが生成できる期待される利益を考慮に入れた、新しく完全に自動化された利益主導のアプローチを導入します。
論文 参考訳(メタデータ) (2020-02-03T14:50:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。