論文の概要: Mitigating Cold-start Forecasting using Cold Causal Demand Forecasting
Model
- arxiv url: http://arxiv.org/abs/2306.09261v1
- Date: Thu, 15 Jun 2023 16:36:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-16 13:58:33.448806
- Title: Mitigating Cold-start Forecasting using Cold Causal Demand Forecasting
Model
- Title(参考訳): コールドカソール需要予測モデルによるコールドスタート予測の緩和
- Authors: Zahra Fatemi, Minh Huynh, Elena Zheleva, Zamir Syed, Xiaojun Di
- Abstract要約: 我々は、因果推論とディープラーニングモデルを統合するCDF-cold(Cold Causal Demand Forecasting)フレームワークを紹介する。
実験により,CDF-coldフレームワークは,多変量時系列データの将来値を予測する上で,最先端の予測モデルより優れていることが示された。
- 参考スコア(独自算出の注目度): 10.132124789018262
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Forecasting multivariate time series data, which involves predicting future
values of variables over time using historical data, has significant practical
applications. Although deep learning-based models have shown promise in this
field, they often fail to capture the causal relationship between dependent
variables, leading to less accurate forecasts. Additionally, these models
cannot handle the cold-start problem in time series data, where certain
variables lack historical data, posing challenges in identifying dependencies
among variables. To address these limitations, we introduce the Cold Causal
Demand Forecasting (CDF-cold) framework that integrates causal inference with
deep learning-based models to enhance the forecasting accuracy of multivariate
time series data affected by the cold-start problem. To validate the
effectiveness of the proposed approach, we collect 15 multivariate time-series
datasets containing the network traffic of different Google data centers. Our
experiments demonstrate that the CDF-cold framework outperforms
state-of-the-art forecasting models in predicting future values of multivariate
time series data.
- Abstract(参考訳): 過去のデータを用いて変数の将来値を予測する多変量時系列データを予測することは、重要な実用的応用をもたらす。
深層学習に基づくモデルはこの分野において有望であるが、従属変数間の因果関係を捉えることができず、精度の低い予測に繋がる。
さらに、これらのモデルは、ある変数が履歴データを欠いている時系列データにおけるコールドスタート問題に対処できず、変数間の依存関係を識別する上での課題を提起する。
これらの制約に対処するために、コールドカウサル需要予測(CDF-cold)フレームワークを導入し、コールドスタート問題に影響を受ける多変量時系列データの予測精度を高めるために、深層学習モデルに因果推論を統合する。
提案手法の有効性を検証するため,Googleデータセンターのネットワークトラフィックを含む15の時系列データセットを収集した。
実験により,cdf-coldフレームワークは,多変量時系列データの予測において最先端予測モデルを上回ることを示した。
関連論文リスト
- Learning Graph Structures and Uncertainty for Accurate and Calibrated Time-series Forecasting [65.40983982856056]
本稿では,時系列間の相関を利用して時系列間の構造を学習し,精度の高い正確な予測を行うSTOICを紹介する。
幅広いベンチマークデータセットに対して、STOICは16%の精度とキャリブレーションのよい予測を提供する。
論文 参考訳(メタデータ) (2024-07-02T20:14:32Z) - TimeSieve: Extracting Temporal Dynamics through Information Bottlenecks [25.928077993323267]
本稿では,時系列予測における課題に対処するため,革新的な時系列予測モデルであるTimeSieveを提案する。
提案手法では,ウェーブレット変換を用いて時系列データを前処理し,パラメータの追加を必要とせずにマルチスケール機能を効果的にキャプチャする。
本研究は,時系列予測における課題に対処するためのアプローチの有効性を検証した。
論文 参考訳(メタデータ) (2024-06-07T15:58:12Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
マスク型ユニバーサル時系列予測変換器(モイライ)について述べる。
Moiraiは、新たに導入された大規模オープンタイムシリーズアーカイブ(LOTSA)で訓練されており、9つのドメインで27億以上の観測が行われた。
Moiraiは、フルショットモデルと比較してゼロショットの予測器として、競争力や優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-02-04T20:00:45Z) - Discovering Predictable Latent Factors for Time Series Forecasting [39.08011991308137]
我々は,観測可能な時系列によって示唆される本質的な潜伏因子を推定するための新しい枠組みを開発する。
予測可能性,充足性,識別性という3つの特性を導入し,これらの特性を強力な潜伏力学モデルを用いてモデル化する。
複数の実データに対する実験結果から, 時系列予測の手法の有効性が示唆された。
論文 参考訳(メタデータ) (2023-03-18T14:37:37Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
時系列予測は多くのアプリケーションにおいて非常に重要な課題である。
実世界の時系列データが短時間に記録されることが一般的であり、これはディープモデルと限られたノイズのある時系列との間に大きなギャップをもたらす。
本稿では,生成モデルを用いた時系列予測問題に対処し,拡散,雑音,ゆがみを備えた双方向変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2023-01-08T12:20:46Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - Optimal Latent Space Forecasting for Large Collections of Short Time
Series Using Temporal Matrix Factorization [0.0]
複数の手法を評価し、それらの方法の1つを選択することや、最良の予測を生成するためのアンサンブルを選択するのが一般的である。
本稿では,低ランク時間行列係数化と潜在時系列上での最適モデル選択を組み合わせることで,短時間の高次元時系列データを予測するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-15T11:39:21Z) - Global Models for Time Series Forecasting: A Simulation Study [2.580765958706854]
自動回帰(AR)や季節ARのような単純なデータ生成プロセス(DGP)からカオスロジスティックマップ、自己興奮型閾値自動回帰、マッキーグラス方程式といった複雑なDGPまで、時系列をシミュレートする。
データセットの長さと系列数は、さまざまなシナリオで変化します。
我々はこれらのデータセットに対して,Recurrent Neural Networks (RNN), Feed-Forward Neural Networks, Pooled Regression (PR) Model, Light Gradient Boosting Models (LGBM)などの大域的予測モデルを用いて実験を行った。
論文 参考訳(メタデータ) (2020-12-23T04:45:52Z) - Transformer Hawkes Process [79.16290557505211]
本稿では,長期的依存関係を捕捉する自己認識機構を利用したTransformer Hawkes Process (THP) モデルを提案する。
THPは、有意なマージンによる可能性と事象予測の精度の両方の観点から、既存のモデルより優れている。
本稿では、THPが関係情報を組み込む際に、複数の点過程を学習する際の予測性能の改善を実現する具体例を示す。
論文 参考訳(メタデータ) (2020-02-21T13:48:13Z) - Multivariate Probabilistic Time Series Forecasting via Conditioned
Normalizing Flows [8.859284959951204]
時系列予測は科学的・工学的な問題の基本である。
深層学習法はこの問題に適している。
多くの実世界のデータセットにおける標準メトリクスの最先端よりも改善されていることを示す。
論文 参考訳(メタデータ) (2020-02-14T16:16:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。