論文の概要: Evaluating alignment between humans and neural network representations in image-based learning tasks
- arxiv url: http://arxiv.org/abs/2306.09377v2
- Date: Thu, 07 Nov 2024 11:21:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 19:36:59.782194
- Title: Evaluating alignment between humans and neural network representations in image-based learning tasks
- Title(参考訳): 画像に基づく学習課題における人間とニューラルネットワーク表現のアライメントの評価
- Authors: Can Demircan, Tankred Saanum, Leonardo Pettini, Marcel Binz, Blazej M Baczkowski, Christian F Doeller, Mona M Garvert, Eric Schulz,
- Abstract要約: トレーニング済みの860ドルのニューラルネットワークモデルの表現が、人間の学習軌跡にどのようにマッピングされているかテストしました。
トレーニングデータセットのサイズは人間の選択に沿った中核的な決定要因であるのに対し、マルチモーダルデータ(テキストと画像)による対照的なトレーニングは、人間の一般化を予測するために現在公開されているモデルの一般的な特徴であることがわかった。
結論として、事前訓練されたニューラルネットワークは、タスク間で伝達可能な認知の基本的な側面を捉えているように見えるため、認知モデルのための表現を抽出するのに役立つ。
- 参考スコア(独自算出の注目度): 5.657101730705275
- License:
- Abstract: Humans represent scenes and objects in rich feature spaces, carrying information that allows us to generalise about category memberships and abstract functions with few examples. What determines whether a neural network model generalises like a human? We tested how well the representations of $86$ pretrained neural network models mapped to human learning trajectories across two tasks where humans had to learn continuous relationships and categories of natural images. In these tasks, both human participants and neural networks successfully identified the relevant stimulus features within a few trials, demonstrating effective generalisation. We found that while training dataset size was a core determinant of alignment with human choices, contrastive training with multi-modal data (text and imagery) was a common feature of currently publicly available models that predicted human generalisation. Intrinsic dimensionality of representations had different effects on alignment for different model types. Lastly, we tested three sets of human-aligned representations and found no consistent improvements in predictive accuracy compared to the baselines. In conclusion, pretrained neural networks can serve to extract representations for cognitive models, as they appear to capture some fundamental aspects of cognition that are transferable across tasks. Both our paradigms and modelling approach offer a novel way to quantify alignment between neural networks and humans and extend cognitive science into more naturalistic domains.
- Abstract(参考訳): 人間はリッチな特徴空間のシーンやオブジェクトを表現し、カテゴリのメンバシップや抽象関数をいくつかの例で一般化できる情報を運ぶ。
ニューラルネットワークモデルが人間のように一般化するかどうかをどう判断するか?
トレーニング済みの860ドルのニューラルネットワークモデルの表現が、人間が自然画像の連続的な関係やカテゴリを学習しなければならない2つのタスクにわたる人間の学習軌跡にいかにうまくマッピングされたかを検証した。
これらのタスクでは、人間の参加者とニューラルネットワークの両方が、いくつかの試験で関連する刺激の特徴を識別し、効果的な一般化を実証した。
トレーニングデータセットのサイズは人間の選択に沿った中核的な決定要因であるのに対し、マルチモーダルデータ(テキストと画像)による対照的なトレーニングは、人間の一般化を予測するために現在公開されているモデルの一般的な特徴であることがわかった。
表現の内在的な次元性は、異なるモデル型のアライメントに異なる影響を及ぼした。
最後に,3組の人間対応表現を検証したところ,ベースラインと比較して予測精度が一貫した改善は得られなかった。
結論として、事前訓練されたニューラルネットワークは、タスク間で伝達可能な認知の基本的な側面を捉えているように見えるため、認知モデルのための表現を抽出するのに役立つ。
私たちのパラダイムとモデリングアプローチはどちらも、ニューラルネットワークと人間のアライメントを定量化し、認知科学をより自然主義的な領域に拡張する新しい方法を提供します。
関連論文リスト
- Aligning Machine and Human Visual Representations across Abstraction Levels [42.86478924838503]
深層ニューラルネットワークは、視覚タスクにおける人間の振る舞いのモデルなど、幅広いアプリケーションで成功している。
しかしながら、ニューラルネットワークのトレーニングと人間の学習は基本的な方法で異なり、ニューラルネットワークは人間のように堅牢に一般化できないことが多い。
人間の概念的知識は、きめ細かいものから粗いものまで階層的に構成されているが、モデル表現は、これらの抽象レベルをすべて正確に捉えているわけではない。
このミスアライメントに対処するために、私たちはまず、人間の判断を模倣するために教師モデルを訓練し、その表現から事前訓練された状態に人間のような構造を移す。
論文 参考訳(メタデータ) (2024-09-10T13:41:08Z) - Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
本稿では,重み空間学習におけるSANEアプローチを紹介する。
ニューラルネットワーク重みのサブセットの逐次処理に向けて,超表現の概念を拡張した。
論文 参考訳(メタデータ) (2024-06-14T13:12:07Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Human-Like Geometric Abstraction in Large Pre-trained Neural Networks [6.650735854030166]
幾何学的視覚処理の認知科学における経験的結果を再考する。
幾何学的視覚処理における3つの重要なバイアスを同定する。
我々は、人間のバイアスを調査する文献からタスクをテストし、AIで使用される大規模なトレーニング済みニューラルネットワークモデルにより、より人間的な抽象幾何学的処理が示されることを示した。
論文 参考訳(メタデータ) (2024-02-06T17:59:46Z) - On Modifying a Neural Network's Perception [3.42658286826597]
本研究では,人間の定義した概念に対して,人工ニューラルネットワークが知覚しているものを修正する手法を提案する。
提案手法を異なるモデルで検証し、実行された操作がモデルによって適切に解釈されているかどうかを評価し、それらに対してどのように反応するかを解析する。
論文 参考訳(メタデータ) (2023-03-05T12:09:37Z) - Human alignment of neural network representations [22.671101285994013]
ニューラルネットワークで学習した表現と行動応答から推定される人間の心的表現のアライメントに影響を与える要因について検討する。
モデルスケールとアーキテクチャは基本的に人間の行動応答に影響を与えないことがわかった。
食物や動物などの人間の概念はニューラルネットワークによってよく表現されているのに対し、ロイヤルやスポーツ関連の物体はそうではない。
論文 参考訳(メタデータ) (2022-11-02T15:23:16Z) - Neural Novel Actor: Learning a Generalized Animatable Neural
Representation for Human Actors [98.24047528960406]
本稿では,複数の人物の多視点画像のスパース集合から,汎用的アニマタブルなニューラル表現を学習するための新しい手法を提案する。
学習された表現は、カメラのスパースセットから任意の人の新しいビューイメージを合成し、さらにユーザのポーズ制御でアニメーション化することができる。
論文 参考訳(メタデータ) (2022-08-25T07:36:46Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Overcoming the Domain Gap in Neural Action Representations [60.47807856873544]
3Dポーズデータは、手動で介入することなく、マルチビュービデオシーケンスから確実に抽出できる。
本稿では,ニューラルアクション表現の符号化を,ニューラルアクションと行動拡張のセットと共に導くために使用することを提案する。
ドメインギャップを減らすために、トレーニングの間、同様の行動をしているように見える動物間で神経と行動のデータを取り替える。
論文 参考訳(メタデータ) (2021-12-02T12:45:46Z) - Seeing eye-to-eye? A comparison of object recognition performance in
humans and deep convolutional neural networks under image manipulation [0.0]
本研究では,ヒトとフィードフォワードニューラルネットワークの視覚コア物体認識性能の行動比較を目的とした。
精度分析の結果、人間はDCNNを全ての条件で上回るだけでなく、形状や色の変化に対する強い堅牢性も示している。
論文 参考訳(メタデータ) (2020-07-13T10:26:30Z) - Adversarially-Trained Deep Nets Transfer Better: Illustration on Image
Classification [53.735029033681435]
トランスファーラーニングは、訓練済みのディープニューラルネットワークを画像認識タスクに新しいドメインに適用するための強力な方法論である。
本研究では,非逆学習モデルよりも逆学習モデルの方が優れていることを示す。
論文 参考訳(メタデータ) (2020-07-11T22:48:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。