論文の概要: Arbitrariness Lies Beyond the Fairness-Accuracy Frontier
- arxiv url: http://arxiv.org/abs/2306.09425v1
- Date: Thu, 15 Jun 2023 18:15:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-19 16:16:02.185549
- Title: Arbitrariness Lies Beyond the Fairness-Accuracy Frontier
- Title(参考訳): アービタリネスはフェアネス精度フロンティアを越えている
- Authors: Carol Xuan Long, Hsiang Hsu, Wael Alghamdi, Flavio P. Calmon
- Abstract要約: 我々は,最先端のフェアネス介入が,グループフェアネスと精度の指標よりも高い予測倍率を隠蔽できることを示した。
より一貫した予測を確実に保証するフェアネス介入に適用可能なアンサンブルアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 3.383670923637875
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning tasks may admit multiple competing models that achieve
similar performance yet produce conflicting outputs for individual samples -- a
phenomenon known as predictive multiplicity. We demonstrate that fairness
interventions in machine learning optimized solely for group fairness and
accuracy can exacerbate predictive multiplicity. Consequently, state-of-the-art
fairness interventions can mask high predictive multiplicity behind favorable
group fairness and accuracy metrics. We argue that a third axis of
``arbitrariness'' should be considered when deploying models to aid
decision-making in applications of individual-level impact. To address this
challenge, we propose an ensemble algorithm applicable to any fairness
intervention that provably ensures more consistent predictions.
- Abstract(参考訳): 機械学習タスクは、同様のパフォーマンスを達成しながら、個々のサンプルに対して相反する結果を生み出す複数の競合モデルを認める可能性がある。
集団的公平性と正確性のみに最適化された機械学習における公平性介入は予測的重複を悪化させることを実証する。
その結果、最先端の公正な介入は、好ましいグループフェアネスと精度のメトリクスの背後にある高い予測的多重度を隠蔽することができる。
我々は、個々のレベルの影響の応用における意思決定を支援するモデルを展開する際に、‘arbitrariness’の第3軸を考慮するべきであると論じる。
この課題に対処するために、より一貫性のある予測を確実に保証するフェアネス介入に適用可能なアンサンブルアルゴリズムを提案する。
関連論文リスト
- Conformal Prediction Sets Can Cause Disparate Impact [4.61590049339329]
コンフォーマル予測は、機械学習モデルの不確実性を定量化するための有望な方法である。
予測セットを提供することは、彼らの決定の不公平性を高めることができることを示す。
カバー範囲を等化するのではなく、経験的により公平な結果をもたらすグループ間でセットサイズを等化することを提案する。
論文 参考訳(メタデータ) (2024-10-02T18:00:01Z) - Fair Few-shot Learning with Auxiliary Sets [53.30014767684218]
多くの機械学習(ML)タスクでは、ラベル付きデータサンプルしか収集できないため、フェアネスのパフォーマンスが低下する可能性がある。
本稿では,限定的なトレーニングサンプルを用いたフェアネス認識学習課題をemphfair few-shot Learning問題として定義する。
そこで我々は,学習した知識をメタテストタスクに一般化し,様々なメタトレーニングタスクに公平な知識を蓄積する新しいフレームワークを考案した。
論文 参考訳(メタデータ) (2023-08-28T06:31:37Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
この研究は、DualFairと呼ばれる自己教師型モデルを提示し、学習された表現から性別や人種などのセンシティブな属性をデバイアスすることができる。
我々のモデルは、グループフェアネスと対実フェアネスという2つのフェアネス基準を共同で最適化する。
論文 参考訳(メタデータ) (2023-03-15T07:13:54Z) - Fairness in Matching under Uncertainty [78.39459690570531]
アルゴリズム的な二面市場は、こうした設定における公平性の問題に注意を向けている。
我々は、利益の不確実性を尊重する両面の市場設定において、個々人の公正性の概念を公理化する。
そこで我々は,配当よりも公平なユーティリティ最大化分布を求めるために,線形プログラミングフレームワークを設計する。
論文 参考訳(メタデータ) (2023-02-08T00:30:32Z) - FADE: FAir Double Ensemble Learning for Observable and Counterfactual
Outcomes [0.0]
公正予測器を構築する方法は、フェアネスと精度、およびフェアネスの異なる基準の間のトレードオフを伴うことが多い。
フェアネス・精度の空間を効率的に探索できるフェアアンサンブル学習のためのフレキシブルなフレームワークを開発した。
驚くべきことに、複数の不公平度対策は、精度にほとんど影響を与えないと同時に、同時に最小化できることが示される。
論文 参考訳(メタデータ) (2021-09-01T03:56:43Z) - Test-time Collective Prediction [73.74982509510961]
マシンラーニングの複数のパーティは、将来のテストポイントを共同で予測したいと考えています。
エージェントは、すべてのエージェントの集合の集合的な専門知識の恩恵を受けることを望んでいるが、データやモデルパラメータを解放する意思はないかもしれない。
我々は、各エージェントの事前学習モデルを利用して、テスト時に集合的な予測を行う分散型メカニズムを探索する。
論文 参考訳(メタデータ) (2021-06-22T18:29:58Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
同様の性能を実現するモデルセットに対して,予測公正性を特徴付けるフレームワークを開発する。
到達可能なグループレベルの予測格差の範囲を計算するためのトラクタブルアルゴリズムを提供します。
選択ラベル付きデータの実証的な課題に対処するために、我々のフレームワークを拡張します。
論文 参考訳(メタデータ) (2021-01-02T02:11:37Z) - Adversarial Learning for Counterfactual Fairness [15.302633901803526]
近年、フェアネスは機械学習研究コミュニティにおいて重要なトピックとなっている。
我々は,MDDの罰則よりも強力な推論を可能にする,対向的ニューラルネットワークアプローチに頼ることを提案する。
実験では、離散的および連続的な設定の両方に対して、対実的公正性の観点から、顕著な改善が示された。
論文 参考訳(メタデータ) (2020-08-30T09:06:03Z) - Beyond Individual and Group Fairness [90.4666341812857]
本稿では,不公平な不公平な苦情に導かれる公平さの新しいデータ駆動モデルを提案する。
我々のモデルは、複数のフェアネス基準をサポートし、それらの潜在的な不整合を考慮に入れている。
論文 参考訳(メタデータ) (2020-08-21T14:14:44Z) - Accuracy and Fairness Trade-offs in Machine Learning: A Stochastic
Multi-Objective Approach [0.0]
機械学習を実生活の意思決定システムに適用すると、予測結果は機密性の高い属性を持つ人々に対して差別され、不公平になる可能性がある。
公正機械学習における一般的な戦略は、予測損失の最小化において、制約や罰則として公正さを含めることである。
本稿では,多目的最適化問題を定式化して公平性を扱うための新しい手法を提案する。
論文 参考訳(メタデータ) (2020-08-03T18:51:24Z) - On Adversarial Bias and the Robustness of Fair Machine Learning [11.584571002297217]
異なるサイズと分布の群に同じ重要性を与えることで、トレーニングデータにおけるバイアスの影響を防止できることが、ロバストネスと矛盾する可能性があることを示す。
少数のトレーニングデータのサンプリングやラベル付けを制御できる敵は、制約のないモデルで達成できる以上のテスト精度を著しく削減することができる。
我々は、複数のアルゴリズムとベンチマークデータセットに対する攻撃の実証的な評価を通じて、公正な機械学習の堅牢性を分析する。
論文 参考訳(メタデータ) (2020-06-15T18:17:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。