論文の概要: Regression-based Physics Informed Neural Networks (Reg-PINNs) for Magnetopause Tracking
- arxiv url: http://arxiv.org/abs/2306.09621v4
- Date: Sun, 10 Nov 2024 08:19:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 17:14:40.730120
- Title: Regression-based Physics Informed Neural Networks (Reg-PINNs) for Magnetopause Tracking
- Title(参考訳): 磁気浮上追跡のための回帰型物理インフォームドニューラルネットワーク(Reg-PINN)
- Authors: Po-Han Hou, Sung-Chi Hsieh,
- Abstract要約: 回帰に基づく物理情報ニューラルネットワーク(Reg-PINN)の紹介
Reg-PINNは、物理にインスパイアされた経験的モデルをニューラルネットワークの損失関数に埋め込む。
シュエのモデルと比較して、この手法はRMSEの約30%の削減を実現している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Previous research in the scientific field has utilized statistical empirical models and machine learning to address fitting challenges. While empirical models have the advantage of numerical generalization, they often sacrifice accuracy. However, conventional machine learning methods can achieve high precision but may lack the desired generalization. The article introduces a Regression-based Physics-Informed Neural Networks (Reg-PINNs), which embeds physics-inspired empirical models into the neural network's loss function, thereby combining the benefits of generalization and high accuracy. The study validates the proposed method using the magnetopause boundary location as the target and explores the feasibility of methods including Shue et al. [1998], a data overfitting model, a fully-connected networks, Reg-PINNs with Shue's model, and Reg-PINNs with the overfitting model. Compared to Shue's model, this technique achieves approximately a 30% reduction in RMSE, presenting a proof-of-concept improved solution for the scientific community.
- Abstract(参考訳): 科学分野におけるこれまでの研究は、統計的経験モデルと機械学習を利用して、適合性の課題に対処してきた。
経験的モデルは数値一般化の利点があるが、精度を犠牲にすることが多い。
しかし、従来の機械学習手法では精度は高いが、望まれる一般化が欠如している可能性がある。
この記事では、回帰に基づく物理インフォームドニューラルネットワーク(Reg-PINN)を紹介し、ニューラルネットワークの損失関数に物理にインスパイアされた経験的モデルを組み込むことにより、一般化と高精度の利点を組み合わせる。
本研究は,Shue et al[1998],データオーバーフィッティングモデル,完全接続ネットワーク,Reg-PINN,Shueモデルを用いたReg-PINN,およびオーバーフィッティングモデルを用いたReg-PINNなどの手法の実現可能性を検討した。
シュエのモデルと比較すると、この手法はRMSEの約30%の削減を実現し、科学界にとって概念実証法が改良された。
関連論文リスト
- Advancing Physics Data Analysis through Machine Learning and Physics-Informed Neural Networks [0.0]
本研究は,物理データ解析のための機械学習(ML)アルゴリズムについて評価する。
これらの手法をシミュレーションシナリオの実験的生存性を識別する二項分類タスクに適用する。
XGBoostは、そのスピードと有効性のために評価された機械学習アルゴリズムの中で好まれる選択として登場した。
論文 参考訳(メタデータ) (2024-10-18T11:05:52Z) - A singular Riemannian Geometry Approach to Deep Neural Networks III. Piecewise Differentiable Layers and Random Walks on $n$-dimensional Classes [49.32130498861987]
本稿ではReLUのような非微分可能活性化関数の事例について検討する。
最近の2つの研究は、ニューラルネットワークを研究するための幾何学的枠組みを導入した。
本稿では,画像の分類と熱力学問題に関する数値実験を行った。
論文 参考訳(メタデータ) (2024-04-09T08:11:46Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - A Survey on Statistical Theory of Deep Learning: Approximation, Training Dynamics, and Generative Models [13.283281356356161]
本稿では3つの観点から,ニューラルネットワークの統計理論に関する文献をレビューする。
ニューラルネットワークの過剰なリスクに関する調査結果をレビューする。
ニューラルネットワークが、目に見えないデータでうまく一般化できるソリューションを見つける方法に答えようとする論文」をレビューする。
論文 参考訳(メタデータ) (2024-01-14T02:30:19Z) - Approximating Numerical Fluxes Using Fourier Neural Operators for Hyperbolic Conservation Laws [7.438389089520601]
物理インフォームドニューラルネットワーク(PINN)やニューラル演算子などのニューラルネットワークベースの手法は、堅牢性と一般化の欠陥を示す。
本研究では,従来の数値フラックスをニューラル演算子に置き換えることによる双曲的保存則に着目した。
提案手法は従来の数値スキームとFNOの長所を組み合わせたもので,いくつかの点で標準FNO法よりも優れている。
論文 参考訳(メタデータ) (2024-01-03T15:16:25Z) - Implicit neural representation with physics-informed neural networks for
the reconstruction of the early part of room impulse responses [16.89505645696765]
物理インフォームドニューラルネットワークを用いて、欠室インパルス応答の初期部分を線形配列で再構成する。
提案モデルは,最先端の深層学習および圧縮センシング技術に関して,高精度な再構築と性能を実現する。
論文 参考訳(メタデータ) (2023-06-20T13:01:00Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Gradient Starvation: A Learning Proclivity in Neural Networks [97.02382916372594]
グラディエント・スターベーションは、タスクに関連する機能のサブセットのみをキャプチャすることで、クロスエントロピー損失を最小化するときに発生する。
この研究は、ニューラルネットワークにおけるそのような特徴不均衡の出現に関する理論的説明を提供する。
論文 参考訳(メタデータ) (2020-11-18T18:52:08Z) - Developing Constrained Neural Units Over Time [81.19349325749037]
本稿では,既存のアプローチと異なるニューラルネットワークの定義方法に焦点をあてる。
ニューラルネットワークの構造は、データとの相互作用にも拡張される制約の特別なクラスによって定義される。
提案した理論は時間領域にキャストされ, データを順序づけられた方法でネットワークに提示する。
論文 参考訳(メタデータ) (2020-09-01T09:07:25Z) - Understanding and mitigating gradient pathologies in physics-informed
neural networks [2.1485350418225244]
この研究は、物理システムの結果を予測し、ノイズの多いデータから隠れた物理を発見するための物理情報ニューラルネットワークの有効性に焦点を当てる。
本稿では,モデル学習中の勾配統計を利用して,複合損失関数の異なる項間の相互作用のバランスをとる学習速度アニーリングアルゴリズムを提案する。
また、そのような勾配に耐性のある新しいニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-01-13T21:23:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。