論文の概要: Physics-Informed Neural Networks with Hard Linear Equality Constraints
- arxiv url: http://arxiv.org/abs/2402.07251v1
- Date: Sun, 11 Feb 2024 17:40:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-13 16:29:03.741057
- Title: Physics-Informed Neural Networks with Hard Linear Equality Constraints
- Title(参考訳): 硬質線形等式制約を持つ物理インフォームニューラルネットワーク
- Authors: Hao Chen, Gonzalo E. Constante Flores, Can Li
- Abstract要約: 本研究は,線形等式制約を厳格に保証する物理インフォームドニューラルネットワークKKT-hPINNを提案する。
溶融タンク炉ユニット, 抽出蒸留サブシステム, 化学プラントのアスペンモデル実験により, このモデルが予測精度をさらに高めることを示した。
- 参考スコア(独自算出の注目度): 9.101849365688905
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Surrogate modeling is used to replace computationally expensive simulations.
Neural networks have been widely applied as surrogate models that enable
efficient evaluations over complex physical systems. Despite this, neural
networks are data-driven models and devoid of any physics. The incorporation of
physics into neural networks can improve generalization and data efficiency.
The physics-informed neural network (PINN) is an approach to leverage known
physical constraints present in the data, but it cannot strictly satisfy them
in the predictions. This work proposes a novel physics-informed neural network,
KKT-hPINN, which rigorously guarantees hard linear equality constraints through
projection layers derived from KKT conditions. Numerical experiments on Aspen
models of a continuous stirred-tank reactor (CSTR) unit, an extractive
distillation subsystem, and a chemical plant demonstrate that this model can
further enhance the prediction accuracy.
- Abstract(参考訳): サーロゲートモデリングは計算コストの高いシミュレーションを置き換えるために使われる。
ニューラルネットワークは、複雑な物理システムに対する効率的な評価を可能にする代理モデルとして広く応用されている。
それにもかかわらず、ニューラルネットワークはデータ駆動モデルであり、いかなる物理学も含まない。
ニューラルネットワークに物理を組み込むことで、一般化とデータの効率が向上する。
物理インフォームドニューラルネットワーク(PINN)は、データに存在する既知の物理的制約を活用するアプローチであるが、予測においてそれらを厳密に満たすことはできない。
本研究は、KKT条件から導かれる射影層を通じて厳密な線形等式制約を保証する新しい物理インフォームドニューラルネットワーク、KKT-hPINNを提案する。
連続溶融タンク炉 (CSTR) ユニット, 抽出蒸留サブシステム, 化学プラントのアスペンモデルに関する数値実験により, このモデルが予測精度をさらに高めることを示した。
関連論文リスト
- Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Bayesian Physics-Informed Neural Networks for real-world nonlinear
dynamical systems [0.0]
ニューラルネットワーク、物理情報モデリング、ベイズ推論を組み合わせることで、データ、物理、不確実性を統合します。
本研究は,ニューラルネットワーク,ベイジアン推論,および両者の組み合わせの固有の長所と短所を明らかにする。
我々は、基礎となる概念や傾向が、より複雑な疾患の状況に一般化されることを期待する。
論文 参考訳(メタデータ) (2022-05-12T19:04:31Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z) - Neural net modeling of equilibria in NSTX-U [0.0]
我々は平衡モデルと形状制御モデルに関連する2つのニューラルネットワークを開発する。
ネットワークにはEFIT01再構成アルゴリズムでトレーニングされた自由境界均衡解法であるEqnetと、Gspert符号でトレーニングされたPertnetが含まれる。
本報告では,これらのモデルが閉ループシミュレーションで確実に使用できることを示す。
論文 参考訳(メタデータ) (2022-02-28T16:09:58Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - On feedforward control using physics-guided neural networks: Training
cost regularization and optimized initialization [0.0]
モデルベースのフィードフォワードコントローラの性能は、典型的には逆システム力学モデルの精度によって制限される。
本稿では,特定物理パラメータを用いた正規化手法を提案する。
実生活の産業用リニアモーターで検証され、追跡精度と外挿の精度が向上する。
論文 参考訳(メタデータ) (2022-01-28T12:51:25Z) - Thermodynamic Consistent Neural Networks for Learning Material
Interfacial Mechanics [6.087530833458481]
トラクション・セパレーション関係(TSR)は、開口中の材料界面の力学的挙動を定量的に記述する。
ニューラルネットワークはロードパスとうまく適合するが、物理の法則に従わないことが多い。
本稿では,TSRのデータ駆動モデルを構築するための熱力学的一貫したニューラルネットワーク (TCNN) を提案する。
論文 参考訳(メタデータ) (2020-11-28T17:25:10Z) - Thermodynamics-based Artificial Neural Networks for constitutive
modeling [0.0]
本稿では,物質点レベルでのひずみ速度独立過程のモデリングのための,データ駆動型物理ベースニューラルネットワークの新たなクラスを提案する。
熱力学の2つの基本原理は、自動微分を利用してネットワークのアーキテクチャに符号化される。
本研究では, 伸縮硬化および軟化ひずみを有するエラスト塑性材料をモデル化するためのTANNの広範囲な適用性を示す。
論文 参考訳(メタデータ) (2020-05-25T15:56:34Z) - Flexible Transmitter Network [84.90891046882213]
現在のニューラルネットワークはMPモデルに基づいて構築されており、通常はニューロンを他のニューロンから受信した信号の実際の重み付け集約上での活性化関数の実行として定式化する。
本稿では,フレキシブル・トランスミッタ(FT)モデルを提案する。
本稿では、最も一般的な完全接続型フィードフォワードアーキテクチャ上に構築された、フレキシブルトランスミッタネットワーク(FTNet)について述べる。
論文 参考訳(メタデータ) (2020-04-08T06:55:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。