The Evolution theory of Learning: From Natural Selection to
Reinforcement Learning
- URL: http://arxiv.org/abs/2306.09961v1
- Date: Fri, 16 Jun 2023 16:44:14 GMT
- Title: The Evolution theory of Learning: From Natural Selection to
Reinforcement Learning
- Authors: Taboubi Ahmed
- Abstract summary: reinforcement learning is a powerful tool used in artificial intelligence to develop intelligent agents that learn from their environment.
In recent years, researchers have explored the connections between these two seemingly distinct fields, and have found compelling evidence that they are more closely related than previously thought.
This paper examines these connections and their implications, highlighting the potential for reinforcement learning principles to enhance our understanding of evolution and the role of feedback in evolutionary systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Evolution is a fundamental process that shapes the biological world we
inhabit, and reinforcement learning is a powerful tool used in artificial
intelligence to develop intelligent agents that learn from their environment.
In recent years, researchers have explored the connections between these two
seemingly distinct fields, and have found compelling evidence that they are
more closely related than previously thought. This paper examines these
connections and their implications, highlighting the potential for
reinforcement learning principles to enhance our understanding of evolution and
the role of feedback in evolutionary systems.
Related papers
- Evolutionary Reinforcement Learning: A Systematic Review and Future
Directions [18.631418642768132]
Evolutionary Reinforcement Learning (EvoRL) is a solution to the limitations of reinforcement learning and evolutionary algorithms (EAs) in complex problem-solving.
EvoRL integrates EAs and reinforcement learning, presenting a promising avenue for training intelligent agents.
This systematic review provides insights into the current state of EvoRL and offers a guide for advancing its capabilities in the ever-evolving landscape of artificial intelligence.
arXiv Detail & Related papers (2024-02-20T02:07:57Z) - When large language models meet evolutionary algorithms [48.213640761641926]
Pre-trained large language models (LLMs) have powerful capabilities for generating creative natural text.
Evolutionary algorithms (EAs) can discover diverse solutions to complex real-world problems.
Motivated by the common collective and directionality of text generation and evolution, this paper illustrates the parallels between LLMs and EAs.
arXiv Detail & Related papers (2024-01-19T05:58:30Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - Role of Morphogenetic Competency on Evolution [0.0]
In Evolutionary Computation, the inverse relationship (impact of intelligence on evolution) is approached from the perspective of organism level behaviour.
We focus on the intelligence of a minimal model of a system navigating anatomical morphospace.
We evolve populations of artificial embryos using a standard genetic algorithm in silico.
arXiv Detail & Related papers (2023-10-13T11:58:18Z) - Learning and evolution: factors influencing an effective combination [0.0]
The mutual relationship between evolution and learning is a controversial argument among the artificial intelligence and neuro-evolution communities.
The author investigates whether combining learning and evolution permits to find better solutions than those discovered by evolution alone.
arXiv Detail & Related papers (2023-06-20T09:03:52Z) - Genes in Intelligent Agents [45.93363823594323]
Animals are born with some intelligence encoded in their genes, but machines lack such intelligence and learn from scratch.
Inspired by the genes of animals, we define the genes'' of machines named as the learngenes'' and propose the Genetic Reinforcement Learning (GRL)
GRL is a computational framework that simulates the evolution of organisms in reinforcement learning (RL) and leverages the learngenes to learn and evolve the intelligence agents.
arXiv Detail & Related papers (2023-06-17T01:24:11Z) - The Introspective Agent: Interdependence of Strategy, Physiology, and
Sensing for Embodied Agents [51.94554095091305]
We argue for an introspective agent, which considers its own abilities in the context of its environment.
Just as in nature, we hope to reframe strategy as one tool, among many, to succeed in an environment.
arXiv Detail & Related papers (2022-01-02T20:14:01Z) - Towards a Theory of Evolution as Multilevel Learning [0.0]
We apply the theory of learning to physically renormalizable systems in an attempt to develop a theory of biological evolution, including the origin of life, as multilevel learning.
We formulate seven fundamental principles of evolution that appear to be necessary and sufficient to render a universe observable.
We show that these principles entail the major features of biological evolution, including replication and natural selection.
arXiv Detail & Related papers (2021-10-27T17:21:16Z) - Embodied Intelligence via Learning and Evolution [92.26791530545479]
We show that environmental complexity fosters the evolution of morphological intelligence.
We also show that evolution rapidly selects morphologies that learn faster.
Our experiments suggest a mechanistic basis for both the Baldwin effect and the emergence of morphological intelligence.
arXiv Detail & Related papers (2021-02-03T18:58:31Z) - Transfer Learning in Deep Reinforcement Learning: A Survey [64.36174156782333]
Reinforcement learning is a learning paradigm for solving sequential decision-making problems.
Recent years have witnessed remarkable progress in reinforcement learning upon the fast development of deep neural networks.
transfer learning has arisen to tackle various challenges faced by reinforcement learning.
arXiv Detail & Related papers (2020-09-16T18:38:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.