Nonlinearities in Black Hole Ringdowns and the Quantization of Gravity
- URL: http://arxiv.org/abs/2306.09974v1
- Date: Fri, 16 Jun 2023 17:12:26 GMT
- Title: Nonlinearities in Black Hole Ringdowns and the Quantization of Gravity
- Authors: Thiago Guerreiro
- Abstract summary: We argue that nonlinear effects in black hole ringdowns can be sensitive to the graviton number statistics.
The prediction of ringdown signals, potentially measurable in the near future, might require the inclusion of quantum effects.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Einstein's theory of gravity admits a low energy effective quantum field
description from which predictions beyond classical general relativity can be
drawn. As gravitational wave detectors improve, one may ask whether
non-classical features of such theory can be experimentally verified. Here we
argue that nonlinear effects in black hole ringdowns can be sensitive to the
graviton number statistics and other quantum properties of gravitational wave
states. The prediction of ringdown signals, potentially measurable in the near
future, might require the inclusion of quantum effects. This offers a new route
to probing the quantum nature of gravity and gravitational wave entanglement.
Related papers
- Semiclassical gravity phenomenology under the causal-conditional quantum measurement prescription II: Heisenberg picture and apparent optical entanglement [13.04737397490371]
In quantum gravity theory, a state-dependent gravitational potential introduces nonlinearity into the state evolution.
The formalism for understanding the continuous quantum measurement process on the quantum state has been previously discussed using the Schr"odinger picture.
In this work, an equivalent formalism using the Heisenberg picture is developed and applied to the analysis of two optomechanical experiment protocols.
arXiv Detail & Related papers (2024-11-08T14:07:18Z) - Quantum Sensing from Gravity as Universal Dephasing Channel for Qubits [41.96816488439435]
WeExploit the generic phenomena of the gravitational redshift and Aharonov-Bohm phase.
We show that entangled quantum states dephase with a universal rate.
We propose qubit-based platforms as quantum sensors for precision gravitometers and mechanical strain gauges.
arXiv Detail & Related papers (2024-06-05T13:36:06Z) - Table-top nanodiamond interferometer enabling quantum gravity tests [34.82692226532414]
We present a feasibility study for a table-top nanodiamond-based interferometer.
By relying on quantum superpositions of steady massive objects our interferometer may allow exploiting just small-range electromagnetic fields.
arXiv Detail & Related papers (2024-05-31T17:20:59Z) - Detecting Gravitationally Interacting Dark Matter with Quantum Interference [47.03992469282679]
We show that there is a theoretical possibility to directly detect such particles using highly sensitive gravity-mediated quantum phase shifts.
In particular, we consider a protocol utilizing Josephson junctions.
arXiv Detail & Related papers (2023-09-15T08:22:46Z) - Inference of gravitational field superposition from quantum measurements [1.7246954941200043]
In non-relativistic quantum mechanics, the gravitational field in such experiments can be written as a superposition state.
We empirically demonstrate that alternative theories of gravity can avoid gravitational superposition states.
Proposed experiments with superposed gravitational sources would provide even stronger evidence that gravity is nonclassical.
arXiv Detail & Related papers (2022-09-06T04:37:07Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Is gravitational entanglement evidence for the quantization of
spacetime? [0.0]
Experiments witnessing the entanglement between two particles interacting only via the gravitational field have been proposed as a test whether gravity must be quantized.
We present a parametrized model for the gravitational interaction of quantum matter on a classical spacetime, inspired by the de Broglie-Bohm formulation of quantum mechanics.
arXiv Detail & Related papers (2022-05-02T14:37:24Z) - Quantum signatures in nonlinear gravitational waves [0.0]
We investigate quantum signatures in gravitational waves using tools from quantum optics.
We show that Squeezed-coherent gravitational waves can enhance or suppress the signal measured by an interferometer.
We also show that Gaussian gravitational wave quantum states can be reconstructed from measurements over an ensemble of optical fields interacting with a single copy of the gravitational wave.
arXiv Detail & Related papers (2021-11-02T17:55:53Z) - Can we detect the quantum nature of weak gravitational fields? [0.0]
An experimental answer to the question of the quantization of gravity is of renewed interest in the era of gravitational wave detectors.
We review and investigate an important subset of quantum gravity, detecting quantum signatures of weak gravitational fields in table-top experiments and interferometers.
arXiv Detail & Related papers (2021-10-06T07:21:09Z) - Resolving the gravitational redshift within a millimeter atomic sample [94.94540201762686]
Einstein's theory of general relativity states that clocks at different gravitational potentials tick at different rates.
We measure a linear frequency gradient consistent with the gravitational redshift within a single millimeter scale sample of ultracold strontium.
arXiv Detail & Related papers (2021-09-24T23:58:35Z) - Gravitational effects in macroscopic quantum systems: a first-principles
analysis [0.0]
We analyze the weak-field limit of General Relativity with matter and its possible quantisations.
This analysis aims towards a predictive quantum theory to provide a first-principles description of gravitational effects in macroscopic quantum systems.
arXiv Detail & Related papers (2021-03-14T21:29:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.