Domain-specific ChatBots for Science using Embeddings
- URL: http://arxiv.org/abs/2306.10067v2
- Date: Thu, 24 Aug 2023 20:24:13 GMT
- Title: Domain-specific ChatBots for Science using Embeddings
- Authors: Kevin G. Yager
- Abstract summary: Large language models (LLMs) have emerged as powerful machine-learning systems capable of handling a myriad of tasks.
Here, we demonstrate how existing methods and software tools can be easily combined to yield a domain-specific chatbots.
- Score: 0.5687661359570725
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have emerged as powerful machine-learning
systems capable of handling a myriad of tasks. Tuned versions of these systems
have been turned into chatbots that can respond to user queries on a vast
diversity of topics, providing informative and creative replies. However, their
application to physical science research remains limited owing to their
incomplete knowledge in these areas, contrasted with the needs of rigor and
sourcing in science domains. Here, we demonstrate how existing methods and
software tools can be easily combined to yield a domain-specific chatbot. The
system ingests scientific documents in existing formats, and uses text
embedding lookup to provide the LLM with domain-specific contextual information
when composing its reply. We similarly demonstrate that existing image
embedding methods can be used for search and retrieval across publication
figures. These results confirm that LLMs are already suitable for use by
physical scientists in accelerating their research efforts.
Related papers
- Knowledge AI: Fine-tuning NLP Models for Facilitating Scientific Knowledge Extraction and Understanding [0.0]
This project investigates the efficacy of Large Language Models (LLMs) in understanding and extracting scientific knowledge across specific domains.
We employ pre-trained models and fine-tune them on datasets in the scientific domain.
arXiv Detail & Related papers (2024-08-04T01:32:09Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
Retrieval-enhancement can be extended to a broader spectrum of machine learning (ML)
This work introduces a formal framework of this paradigm, Retrieval-Enhanced Machine Learning (REML), by synthesizing the literature in various domains in ML with consistent notations which is missing from the current literature.
The goal of this work is to equip researchers across various disciplines with a comprehensive, formally structured framework of retrieval-enhanced models, thereby fostering interdisciplinary future research.
arXiv Detail & Related papers (2024-07-17T20:01:21Z) - A Comprehensive Survey of Scientific Large Language Models and Their Applications in Scientific Discovery [68.48094108571432]
Large language models (LLMs) have revolutionized the way text and other modalities of data are handled.
We aim to provide a more holistic view of the research landscape by unveiling cross-field and cross-modal connections between scientific LLMs.
arXiv Detail & Related papers (2024-06-16T08:03:24Z) - Cross-Data Knowledge Graph Construction for LLM-enabled Educational Question-Answering System: A Case Study at HCMUT [2.8000537365271367]
Large language models (LLMs) have emerged as a vibrant research topic.
LLMs face challenges in remembering events, incorporating new information, and addressing domain-specific issues or hallucinations.
This article proposes a method for automatically constructing a Knowledge Graph from multiple data sources.
arXiv Detail & Related papers (2024-04-14T16:34:31Z) - Materials science in the era of large language models: a perspective [0.0]
Large Language Models (LLMs) have garnered considerable interest due to their impressive capabilities.
This paper argues their ability to handle ambiguous requirements across a range of tasks and disciplines mean they could be a powerful tool to aid researchers.
arXiv Detail & Related papers (2024-03-11T17:34:25Z) - Large Language Models for Scientific Information Extraction: An
Empirical Study for Virology [0.0]
We champion the use of structured and semantic content representation of discourse-based scholarly communication.
Inspired by tools like Wikipedia infoboxes or structured Amazon product descriptions, we develop an automated approach to produce structured scholarly contribution summaries.
Our results show that finetuned FLAN-T5 with 1000x fewer parameters than the state-of-the-art GPT-davinci is competitive for the task.
arXiv Detail & Related papers (2024-01-18T15:04:55Z) - Large Language Models for Generative Information Extraction: A Survey [89.71273968283616]
Large Language Models (LLMs) have demonstrated remarkable capabilities in text understanding and generation.
We present an extensive overview by categorizing these works in terms of various IE subtasks and techniques.
We empirically analyze the most advanced methods and discover the emerging trend of IE tasks with LLMs.
arXiv Detail & Related papers (2023-12-29T14:25:22Z) - A Self-enhancement Approach for Domain-specific Chatbot Training via
Knowledge Mining and Digest [62.63606958140248]
Large Language Models (LLMs) often encounter challenges when dealing with intricate and knowledge-demanding queries in specific domains.
This paper introduces a novel approach to enhance LLMs by effectively extracting the relevant knowledge from domain-specific textual sources.
We train a knowledge miner, namely LLMiner, which autonomously extracts Question-Answer pairs from relevant documents.
arXiv Detail & Related papers (2023-11-17T16:09:10Z) - Chat2Brain: A Method for Mapping Open-Ended Semantic Queries to Brain
Activation Maps [59.648646222905235]
We propose a method called Chat2Brain that combines LLMs to basic text-2-image model, known as Text2Brain, to map semantic queries to brain activation maps.
We demonstrate that Chat2Brain can synthesize plausible neural activation patterns for more complex tasks of text queries.
arXiv Detail & Related papers (2023-09-10T13:06:45Z) - MAGE: Machine-generated Text Detection in the Wild [82.70561073277801]
Large language models (LLMs) have achieved human-level text generation, emphasizing the need for effective AI-generated text detection.
We build a comprehensive testbed by gathering texts from diverse human writings and texts generated by different LLMs.
Despite challenges, the top-performing detector can identify 86.54% out-of-domain texts generated by a new LLM, indicating the feasibility for application scenarios.
arXiv Detail & Related papers (2023-05-22T17:13:29Z) - Logic Mill -- A Knowledge Navigation System [0.16785092703248325]
Logic Mill is a scalable and openly accessible software system that identifies semantically similar documents.
It uses advanced Natural Language Processing (NLP) techniques to generate numerical representations of documents.
The system focuses on scientific publications and patent documents and contains more than 200 million documents.
arXiv Detail & Related papers (2022-12-31T13:46:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.