An Architectural Design Decision Model for Resilient IoT Application
- URL: http://arxiv.org/abs/2306.10429v1
- Date: Sat, 17 Jun 2023 21:44:07 GMT
- Title: An Architectural Design Decision Model for Resilient IoT Application
- Authors: Cristovao Freitas Iglesias Jr, Claudio Miceli and Miodrag Bolic
- Abstract summary: Any threat affecting the availability of IoT applications can be crucial financially and for the safety of the physical integrity of users.
This feature calls for IoT applications that remain operational and efficiently handle possible threats.
An architectural Design Decision Model for Resilient IoT applications is presented to reduce the difficulty of stakeholders.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Internet of Things is a paradigm that refers to the ubiquitous presence
around us of physical objects equipped with sensing, networking, and processing
capabilities that allow them to cooperate with their environment to reach
common goals. However, any threat affecting the availability of IoT
applications can be crucial financially and for the safety of the physical
integrity of users. This feature calls for IoT applications that remain
operational and efficiently handle possible threats. However, designing an IoT
application that can handle threats is challenging for stakeholders due to the
high susceptibility to threats of IoT applications and the lack of modeling
mechanisms that contemplate resilience as a first-class representation. In this
paper, an architectural Design Decision Model for Resilient IoT applications is
presented to reduce the difficulty of stakeholders in designing resilient IoT
applications. Our approach is illustrated and demonstrates the value through
the modeling of a case.
Related papers
- RITA: Automatic Framework for Designing of Resilient IoT Applications [0.0]
We propose RITA, an automated, open-source framework that uses a fine-tuned RoBERTa-based Named Entity Recognition (NER) model.
RITA operates entirely offline and can be deployed on-site, safeguarding sensitive information.
In our empirical evaluation, RITA outperformed ChatGPT in four of seven ICO categories.
arXiv Detail & Related papers (2024-11-27T13:24:52Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence (GAI) stands at the forefront of AI innovation, demonstrating rapid advancement and unparalleled proficiency in generating diverse content.
In this paper, we offer an extensive survey on the various applications of GAI in enhancing security within the physical layer of communication networks.
We delve into the roles of GAI in addressing challenges of physical layer security, focusing on communication confidentiality, authentication, availability, resilience, and integrity.
arXiv Detail & Related papers (2024-02-21T06:22:41Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Classification of cyber attacks on IoT and ubiquitous computing devices [49.1574468325115]
This paper provides a classification of IoT malware.
Major targets and used exploits for attacks are identified and referred to the specific malware.
The majority of current IoT attacks continue to be of comparably low effort and level of sophistication and could be mitigated by existing technical measures.
arXiv Detail & Related papers (2023-12-01T16:10:43Z) - From Generative AI to Generative Internet of Things: Fundamentals,
Framework, and Outlooks [82.964958051535]
Generative Artificial Intelligence (GAI) possesses the capabilities of generating realistic data and facilitating advanced decision-making.
By integrating GAI into modern Internet of Things (IoT), Generative Internet of Things (GIoT) is emerging and holds immense potential to revolutionize various aspects of society.
arXiv Detail & Related papers (2023-10-27T02:58:11Z) - Towards Artificial General Intelligence (AGI) in the Internet of Things
(IoT): Opportunities and Challenges [55.82853124625841]
Artificial General Intelligence (AGI) possesses the capacity to comprehend, learn, and execute tasks with human cognitive abilities.
This research embarks on an exploration of the opportunities and challenges towards achieving AGI in the context of the Internet of Things.
The application spectrum for AGI-infused IoT is broad, encompassing domains ranging from smart grids, residential environments, manufacturing, and transportation to environmental monitoring, agriculture, healthcare, and education.
arXiv Detail & Related papers (2023-09-14T05:43:36Z) - Navigating the IoT landscape: Unraveling forensics, security issues, applications, research challenges, and future [6.422895251217666]
This paper reviews forensic and security issues associated with IoT in different fields.
Most IoT devices are vulnerable to attacks due to a lack of standardized security measures.
To fulfil the security-conscious needs of consumers, IoT can be used to develop a smart home system.
arXiv Detail & Related papers (2023-09-06T04:41:48Z) - The Internet of Senses: Building on Semantic Communications and Edge
Intelligence [67.75406096878321]
The Internet of Senses (IoS) holds the promise of flawless telepresence-style communication for all human receptors'
We elaborate on how the emerging semantic communications and Artificial Intelligence (AI)/Machine Learning (ML) paradigms may satisfy the requirements of IoS use cases.
arXiv Detail & Related papers (2022-12-21T03:37:38Z) - Dependable Intrusion Detection System for IoT: A Deep Transfer
Learning-based Approach [0.0]
This manuscript proposes a deep transfer learning-based dependable IDS model that outperforms several existing approaches.
It includes effective attribute selection, which is best suited to identify normal and attack scenarios for a small amount of labeled data.
It also includes a dependable deep transfer learning-based ResNet model, and evaluating considering real-world data.
arXiv Detail & Related papers (2022-04-11T02:46:22Z) - Machine learning and data analytics for the IoT [8.39035688352917]
We review how IoT-generated data are processed for machine learning analysis.
We propose a framework to enable IoT applications to adaptively learn from other IoT applications.
arXiv Detail & Related papers (2020-06-30T07:38:31Z) - Personalized Federated Learning for Intelligent IoT Applications: A
Cloud-Edge based Framework [12.199870302894439]
Internet of Things (IoT) have widely penetrated in different aspects of modern life.
In this article we advocate a personalized federated learning framework in a cloud-edge architecture for intelligent IoT applications.
arXiv Detail & Related papers (2020-02-25T05:11:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.