Dark-state induced trapping law in single-photon emission from multiple
quantum emitters
- URL: http://arxiv.org/abs/2306.10682v1
- Date: Mon, 19 Jun 2023 03:06:09 GMT
- Title: Dark-state induced trapping law in single-photon emission from multiple
quantum emitters
- Authors: Lei Qiao, Jiangbin Gong
- Abstract summary: We study the single-photon collective dynamics in a waveguide system consisting of the photon channel with a finite bandwidth and an ensemble of quantum emitters.
Our findings lead to the prediction that single-photon collective emissions can be strongly suppressed if the number of excited emitters is much less than the total number of emitters in the system.
- Score: 1.0723935272906462
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the single-photon collective dynamics in a waveguide system
consisting of the photon channel with a finite bandwidth and an ensemble of
quantum emitters. The size of the volume of these quantum emitters is ignorable
when compared with the wavelength of the radiation photons. Based on the
analytical calculations beyond the Wigner-Weisskopf and Markovian theories, we
present exact solutions to the time evolution of the excited emitters with
collective effects. Different from the trapping effect caused by photon-emitter
bound states, we find that the dark states in the systems lead to a universal
trapping behavior independent of the bosonic bath and the coupling strength
between photons and emitters. Instead, the trapping is solely determined by the
number of initially excited emitters and the total number of emitters. We
demonstrate that such a trapping law can persist even when there are more than
one type of emitters in the system. Our findings lead to the prediction that
single-photon collective emissions can be strongly suppressed if the number of
excited emitters is much less than the total number of emitters in the system.
Related papers
- Wavevector-resolved polarization entanglement from radiative cascades [27.84599956781646]
We show that there exists an interplay between photon polarization and emission wavevector, strongly affecting quantum correlations when emitters are embedded in micro-cavities.
Our results, backed by theoretical modelling, yield a brand-new understanding of cascaded emission for various quantum emitters.
arXiv Detail & Related papers (2024-09-12T09:32:29Z) - How single-photon nonlinearity is quenched with multiple quantum
emitters: Quantum Zeno effect in collective interactions with $\Lambda$-level
atoms [49.1574468325115]
We show that the single-photon nonlinearity vanishes with the number of emitters.
The mechanism behind this behavior is the quantum Zeno effect, manifested in the slowdown of the photon-controlled dynamics.
arXiv Detail & Related papers (2024-01-13T06:55:18Z) - Observation of superradiant bursts in a cascaded quantum system [0.0]
Dicke superradiance describes the collective radiative decay of a fully inverted ensemble of two-level atoms.
We experimentally investigate this effect for a chiral, i.e.,direction-dependent light--matter coupling.
Our results shed light on the collective radiative dynamics of cascaded quantum many-body systems.
arXiv Detail & Related papers (2022-11-16T14:36:10Z) - Entanglement of annihilation photons [141.5628276096321]
We present the results of a new experimental study of the quantum entanglement of photon pairs produced in positron-electron annihilation at rest.
Despite numerous measurements, there is still no experimental proof of the entanglement of photons.
arXiv Detail & Related papers (2022-10-14T08:21:55Z) - A multipair-free source of entangled photons in the solid state [0.0]
Multiphoton emission commonly reduces the degree of entanglement of photons generated by non-classical light sources.
Quantum emitters have the potential to overcome this hurdle but, so far, the effect of multiphoton emission on the quality of entanglement has never been addressed in detail.
arXiv Detail & Related papers (2022-03-31T14:50:16Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Inelastic scattering of a photon by a quantum phase-slip [0.0]
We show that a quantum phase-slip fluctuation in high-impedance superconducting waveguides can split a single microwave photon into a large number of lower-energy photons.
The measured decay rates are explained without adjustable parameters in the framework of a new model of a quantum impurity in a Luttinger liquid.
arXiv Detail & Related papers (2020-10-05T15:35:21Z) - Quantum Borrmann effect for dissipation-immune photon-photon
correlations [137.6408511310322]
We study theoretically the second-order correlation function $g(2)(t)$ for photons transmitted through a periodic Bragg-spaced array of superconducting qubits, coupled to a waveguide.
We demonstrate that photon bunching and anti-bunching persist much longer than both radiative and non-radiative lifetimes of a single qubit.
arXiv Detail & Related papers (2020-09-29T14:37:04Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.