論文の概要: Simplifying and Empowering Transformers for Large-Graph Representations
- arxiv url: http://arxiv.org/abs/2306.10759v1
- Date: Mon, 19 Jun 2023 08:03:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-21 18:47:20.927432
- Title: Simplifying and Empowering Transformers for Large-Graph Representations
- Title(参考訳): 大グラフ表現のためのトランスフォーマーの単純化とエンパワーメント
- Authors: Qitian Wu, Wentao Zhao, Chenxiao Yang, Hengrui Zhang, Fan Nie, Haitian
Jiang, Yatao Bian, Junchi Yan
- Abstract要約: ノード特性予測ベンチマークにおいて,一層注意が驚くほど高い性能を示すことを示す。
提案手法をSGFormer (Simplified Graph Transformer) と呼ぶ。
提案手法は,大きなグラフ上にトランスフォーマーを構築する上で,独立性のある新たな技術パスを啓蒙するものである。
- 参考スコア(独自算出の注目度): 60.13706721081543
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning representations on large-sized graphs is a long-standing challenge
due to the inter-dependence nature involved in massive data points.
Transformers, as an emerging class of foundation encoders for graph-structured
data, have shown promising performance on small graphs due to its global
attention capable of capturing all-pair influence beyond neighboring nodes.
Even so, existing approaches tend to inherit the spirit of Transformers in
language and vision tasks, and embrace complicated models by stacking deep
multi-head attentions. In this paper, we critically demonstrate that even using
a one-layer attention can bring up surprisingly competitive performance across
node property prediction benchmarks where node numbers range from
thousand-level to billion-level. This encourages us to rethink the design
philosophy for Transformers on large graphs, where the global attention is a
computation overhead hindering the scalability. We frame the proposed scheme as
Simplified Graph Transformers (SGFormer), which is empowered by a simple
attention model that can efficiently propagate information among arbitrary
nodes in one layer. SGFormer requires none of positional encodings,
feature/graph pre-processing or augmented loss. Empirically, SGFormer
successfully scales to the web-scale graph ogbn-papers100M and yields up to
141x inference acceleration over SOTA Transformers on medium-sized graphs.
Beyond current results, we believe the proposed methodology alone enlightens a
new technical path of independent interest for building Transformers on large
graphs.
- Abstract(参考訳): 大規模グラフでの表現の学習は、大量のデータポイントに関わる相互依存性のため、長年にわたる課題である。
グラフ構造化データのための基盤エンコーダの新たなクラスであるトランスフォーマーは、隣接するノードを越えて全ペアの影響を捉えることができるため、小さなグラフ上で有望な性能を示している。
それでも、既存のアプローチは、言語や視覚タスクにおけるトランスフォーマーの精神を継承し、深いマルチヘッドの注意を積み重ねることで複雑なモデルを受け入れる傾向があります。
本稿では,一層注意を払わなくても,ノード数が千レベルから十億レベルに及ぶノード特性予測ベンチマークにおいて,驚くほどの競合性能が得られることを批判的に示す。
これにより、大きなグラフ上でTransformerの設計哲学を再考し、グローバルな注目はスケーラビリティを妨げる計算オーバーヘッドである。
提案手法を簡易グラフトランスフォーマー (sgformer) として構成し, 1 層内の任意のノード間の情報を効率的に伝達するシンプルな注意モデルによって実現されている。
SGFormerは、位置エンコーディング、フィーチャ/グラフ前処理、拡張損失を必要としない。
実証的には、SGFormerはWebスケールグラフogbn-papers100Mにスケールし、中規模のグラフ上でSOTA変換器上で最大141倍の推論加速度を得る。
提案手法は,現在の結果以外にも,大規模なグラフ上にトランスフォーマーを構築する上で,独立性のある新たな技術パスを実現するものだと考えている。
関連論文リスト
- SGFormer: Single-Layer Graph Transformers with Approximation-Free Linear Complexity [74.51827323742506]
グラフ上でのトランスフォーマーにおける多層アテンションの導入の必要性を評価する。
本研究では,一層伝播を一層伝播に還元できることを示す。
これは、グラフ上で強力で効率的なトランスフォーマーを構築するための新しい技術パスを示唆している。
論文 参考訳(メタデータ) (2024-09-13T17:37:34Z) - Masked Graph Transformer for Large-Scale Recommendation [56.37903431721977]
本稿では, MGFormer という名前の効率的な Masked Graph Transformer を提案する。
実験の結果,単一注意層でもMGFormerの優れた性能が得られた。
論文 参考訳(メタデータ) (2024-05-07T06:00:47Z) - Graph Transformers for Large Graphs [57.19338459218758]
この研究は、モデルの特徴と重要な設計制約を識別することに焦点を当てた、単一の大規模グラフでの表現学習を前進させる。
この研究の重要な革新は、局所的な注意機構と組み合わされた高速な近傍サンプリング技術の作成である。
ogbn-products と snap-patents の3倍の高速化と16.8%の性能向上を報告し、ogbn-100M で LargeGT を5.9% の性能改善で拡張した。
論文 参考訳(メタデータ) (2023-12-18T11:19:23Z) - Hybrid Focal and Full-Range Attention Based Graph Transformers [0.0]
本稿では,Focal と Full-Range Graph Transformer (FFGT) という,純粋に注目に基づくアーキテクチャを提案する。
FFGTは、従来のフルレンジアテンションとエゴネットへのKホップアテンションを組み合わせることで、グローバル情報とローカル情報の両方を集約する。
提案手法は,各種オープンデータセット上での既存のグラフ変換器の性能を向上させる。
論文 参考訳(メタデータ) (2023-11-08T12:53:07Z) - Deep Prompt Tuning for Graph Transformers [55.2480439325792]
ファインチューニングはリソース集約型であり、大きなモデルのコピーを複数保存する必要がある。
ファインチューニングの代替として,ディープグラフプロンプトチューニングと呼ばれる新しい手法を提案する。
事前学習したパラメータを凍結し、追加したトークンのみを更新することにより、フリーパラメータの数を減らし、複数のモデルコピーを不要にする。
論文 参考訳(メタデータ) (2023-09-18T20:12:17Z) - Are More Layers Beneficial to Graph Transformers? [97.05661983225603]
現在のグラフ変換器は、深さの増大によるパフォーマンス向上のボトルネックに悩まされている。
ディープグラフ変換器は、グローバルな注目の消滅能力によって制限されている。
本稿では,符号化表現に部分構造トークンを明示的に用いたDeepGraphという新しいグラフトランスフォーマーモデルを提案する。
論文 参考訳(メタデータ) (2023-03-01T15:22:40Z) - Gophormer: Ego-Graph Transformer for Node Classification [27.491500255498845]
本稿では,egoグラフにフルグラフの代わりにトランスフォーマーを適用した新しいGophormerモデルを提案する。
具体的には、変圧器の入力としてエゴグラフをサンプリングするためにNode2Seqモジュールが提案されており、スケーラビリティの課題が軽減されている。
エゴグラフサンプリングで導入された不確実性に対処するために,一貫性の正則化とマルチサンプル推論戦略を提案する。
論文 参考訳(メタデータ) (2021-10-25T16:43:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。