MotionGPT: Finetuned LLMs Are General-Purpose Motion Generators
- URL: http://arxiv.org/abs/2306.10900v2
- Date: Mon, 18 Mar 2024 04:14:50 GMT
- Title: MotionGPT: Finetuned LLMs Are General-Purpose Motion Generators
- Authors: Yaqi Zhang, Di Huang, Bin Liu, Shixiang Tang, Yan Lu, Lu Chen, Lei Bai, Qi Chu, Nenghai Yu, Wanli Ouyang,
- Abstract summary: This paper presents a Motion General-Purpose generaTor (MotionGPT) that can use multimodal control signals.
We first quantize multimodal control signals into discrete codes and then formulate them in a unified prompt instruction.
Our MotionGPT demonstrates a unified human motion generation model with multimodal control signals by tuning a mere 0.4% of LLM parameters.
- Score: 108.67006263044772
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generating realistic human motion from given action descriptions has experienced significant advancements because of the emerging requirement of digital humans. While recent works have achieved impressive results in generating motion directly from textual action descriptions, they often support only a single modality of the control signal, which limits their application in the real digital human industry. This paper presents a Motion General-Purpose generaTor (MotionGPT) that can use multimodal control signals, e.g., text and single-frame poses, for generating consecutive human motions by treating multimodal signals as special input tokens in large language models (LLMs). Specifically, we first quantize multimodal control signals into discrete codes and then formulate them in a unified prompt instruction to ask the LLMs to generate the motion answer. Our MotionGPT demonstrates a unified human motion generation model with multimodal control signals by tuning a mere 0.4% of LLM parameters. To the best of our knowledge, MotionGPT is the first method to generate human motion by multimodal control signals, which we hope can shed light on this new direction. Visit our webpage at https://qiqiapink.github.io/MotionGPT/.
Related papers
- TokenMotion: Decoupled Motion Control via Token Disentanglement for Human-centric Video Generation [7.900728371180723]
We present TokenMotion, the first DiT-based video diffusion framework that enables fine-grained control over camera motion.
Our approach introduces a unified modeling framework utilizing a decouple-and-fuse strategy, bridged by a human-aware dynamic mask.
Our work represents a significant advancement in controllable video generation, with particular relevance for creative production applications.
arXiv Detail & Related papers (2025-04-11T00:41:25Z) - DirectorLLM for Human-Centric Video Generation [46.37441947526771]
We introduce DirectorLLM, a novel video generation model that employs a large language model (LLM) to orchestrate human poses within videos.
Our model outperforms existing ones in generating videos with higher human motion fidelity, improved prompt faithfulness, and enhanced rendered subject naturalness.
arXiv Detail & Related papers (2024-12-19T03:10:26Z) - Motion Prompting: Controlling Video Generation with Motion Trajectories [57.049252242807874]
We train a video generation model conditioned on sparse or dense video trajectories.
We translate high-level user requests into detailed, semi-dense motion prompts.
We demonstrate our approach through various applications, including camera and object motion control, "interacting" with an image, motion transfer, and image editing.
arXiv Detail & Related papers (2024-12-03T18:59:56Z) - MotionGPT-2: A General-Purpose Motion-Language Model for Motion Generation and Understanding [76.30210465222218]
MotionGPT-2 is a unified Large Motion-Language Model (LMLMLM)
It supports multimodal control conditions through pre-trained Large Language Models (LLMs)
It is highly adaptable to the challenging 3D holistic motion generation task.
arXiv Detail & Related papers (2024-10-29T05:25:34Z) - MotionBank: A Large-scale Video Motion Benchmark with Disentangled Rule-based Annotations [85.85596165472663]
We build MotionBank, which comprises 13 video action datasets, 1.24M motion sequences, and 132.9M frames of natural and diverse human motions.
Our MotionBank is beneficial for general motion-related tasks of human motion generation, motion in-context generation, and motion understanding.
arXiv Detail & Related papers (2024-10-17T17:31:24Z) - FreeMotion: MoCap-Free Human Motion Synthesis with Multimodal Large Language Models [19.09048969615117]
We explore open-set human motion synthesis using natural language instructions as user control signals based on MLLMs.
Our method can achieve general human motion synthesis for many downstream tasks.
arXiv Detail & Related papers (2024-06-15T21:10:37Z) - Motion-Agent: A Conversational Framework for Human Motion Generation with LLMs [67.59291068131438]
Motion-Agent is a conversational framework designed for general human motion generation, editing, and understanding.
Motion-Agent employs an open-source pre-trained language model to develop a generative agent, MotionLLM, that bridges the gap between motion and text.
arXiv Detail & Related papers (2024-05-27T09:57:51Z) - Universal Humanoid Motion Representations for Physics-Based Control [71.46142106079292]
We present a universal motion representation that encompasses a comprehensive range of motor skills for physics-based humanoid control.
We first learn a motion imitator that can imitate all of human motion from a large, unstructured motion dataset.
We then create our motion representation by distilling skills directly from the imitator.
arXiv Detail & Related papers (2023-10-06T20:48:43Z) - NEURAL MARIONETTE: A Transformer-based Multi-action Human Motion
Synthesis System [51.43113919042621]
We present a neural network-based system for long-term, multi-action human motion synthesis.
The system can produce meaningful motions with smooth transitions from simple user input.
We also present a new dataset dedicated to the multi-action motion synthesis task.
arXiv Detail & Related papers (2022-09-27T07:10:20Z) - MotionDiffuse: Text-Driven Human Motion Generation with Diffusion Model [35.32967411186489]
MotionDiffuse is a diffusion model-based text-driven motion generation framework.
It excels at modeling complicated data distribution and generating vivid motion sequences.
It responds to fine-grained instructions on body parts, and arbitrary-length motion synthesis with time-varied text prompts.
arXiv Detail & Related papers (2022-08-31T17:58:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.