Accelerated, physics-inspired inference of skeletal muscle
microstructure from diffusion-weighted MRI
- URL: http://arxiv.org/abs/2306.11125v1
- Date: Mon, 19 Jun 2023 19:01:04 GMT
- Title: Accelerated, physics-inspired inference of skeletal muscle
microstructure from diffusion-weighted MRI
- Authors: Noel Naughton, Stacey Cahoon, Brad Sutton, and John G. Georgiadis
- Abstract summary: Current measures of skeletal muscle health take limited account of microstructural variations within muscle, which play a crucial role in mediating muscle function.
We present a physics-inspired, machine learning-based framework for the non-invasive and in vivo estimation of microstructural organization in skeletal muscle.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Muscle health is a critical component of overall health and quality of life.
However, current measures of skeletal muscle health take limited account of
microstructural variations within muscle, which play a crucial role in
mediating muscle function. To address this, we present a physics-inspired,
machine learning-based framework for the non-invasive and in vivo estimation of
microstructural organization in skeletal muscle from diffusion-weighted MRI
(dMRI). To reduce the computational expense associated with direct numerical
simulations of dMRI physics, a polynomial meta-model is developed that
accurately represents the input/output relationships of a high-fidelity
numerical model. This meta-model is used to develop a Gaussian process (GP)
model to provide voxel-wise estimates and confidence intervals of
microstructure organization in skeletal muscle. Given noise-free data, the GP
model accurately estimates microstructural parameters. In the presence of
noise, the diameter, intracellular diffusion coefficient, and membrane
permeability are accurately estimated with narrow confidence intervals, while
volume fraction and extracellular diffusion coefficient are poorly estimated
and exhibit wide confidence intervals. A reduced-acquisition GP model,
consisting of one-third the diffusion-encoding measurements, is shown to
predict parameters with similar accuracy to the original model. The fiber
diameter and volume fraction estimated by the reduced GP model is validated via
histology, with both parameters within their associated confidence intervals,
demonstrating the capability of the proposed framework as a promising
non-invasive tool for assessing skeletal muscle health and function.
Related papers
- MRI Parameter Mapping via Gaussian Mixture VAE: Breaking the Assumption of Independent Pixels [3.720246718519987]
We introduce and demonstrate a new paradigm for quantitative parameter mapping in MRI.
We propose a self-supervised deep variational approach that breaks the assumption of independent pixels.
Our approach can hence support the clinical adoption of parameter mapping methods such as dMRI and qMRI.
arXiv Detail & Related papers (2024-11-16T11:11:36Z) - TopoTxR: A topology-guided deep convolutional network for breast parenchyma learning on DCE-MRIs [49.69047720285225]
We propose a novel topological approach that explicitly extracts multi-scale topological structures to better approximate breast parenchymal structures.
We empirically validate emphTopoTxR using the VICTRE phantom breast dataset.
Our qualitative and quantitative analyses suggest differential topological behavior of breast tissue in treatment-na"ive imaging.
arXiv Detail & Related papers (2024-11-05T19:35:10Z) - Mesh-Informed Reduced Order Models for Aneurysm Rupture Risk Prediction [0.0]
Graph Neural Networks (GNNs) exploit the natural graph structure of the mesh obtained by the Finite Volume (FV) discretization.
Our experimental validation framework yields promising results, confirming our method as a valid alternative that overcomes the curse of dimensionality.
arXiv Detail & Related papers (2024-10-04T09:39:15Z) - qMRI Diffuser: Quantitative T1 Mapping of the Brain using a Denoising Diffusion Probabilistic Model [1.1278063431495107]
Quantitative MRI (qMRI) offers significant advantages over weighted images by providing objective parameters related to tissue properties.
Deep learning-based methods have demonstrated effectiveness in estimating quantitative maps from series of weighted images.
We present qMRI diffuser, a novel approach to qMRI utilising deep generative models.
arXiv Detail & Related papers (2024-07-23T13:49:19Z) - A Demographic-Conditioned Variational Autoencoder for fMRI Distribution Sampling and Removal of Confounds [49.34500499203579]
We create a variational autoencoder (VAE)-based model, DemoVAE, to decorrelate fMRI features from demographics.
We generate high-quality synthetic fMRI data based on user-supplied demographics.
arXiv Detail & Related papers (2024-05-13T17:49:20Z) - MS-MANO: Enabling Hand Pose Tracking with Biomechanical Constraints [50.61346764110482]
We integrate a musculoskeletal system with a learnable parametric hand model, MANO, to create MS-MANO.
This model emulates the dynamics of muscles and tendons to drive the skeletal system, imposing physiologically realistic constraints on the resulting torque trajectories.
We also propose a simulation-in-the-loop pose refinement framework, BioPR, that refines the initial estimated pose through a multi-layer perceptron network.
arXiv Detail & Related papers (2024-04-16T02:18:18Z) - Simulation-based Inference for Cardiovascular Models [57.92535897767929]
We use simulation-based inference to solve the inverse problem of mapping waveforms back to plausible physiological parameters.
We perform an in-silico uncertainty analysis of five biomarkers of clinical interest.
We study the gap between in-vivo and in-silico with the MIMIC-III waveform database.
arXiv Detail & Related papers (2023-07-26T02:34:57Z) - Three-dimensional micro-structurally informed in silico myocardium --
towards virtual imaging trials in cardiac diffusion weighted MRI [58.484353709077034]
We propose a novel method to generate a realistic numerical phantom of myocardial microstructure.
In-silico tissue models enable evaluating quantitative models of magnetic resonance imaging.
arXiv Detail & Related papers (2022-08-22T22:01:44Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Physics-informed neural networks for myocardial perfusion MRI
quantification [3.318100528966778]
This study introduces physics-informed neural networks (PINNs) as a means to perform myocardial perfusion MR quantification.
PINNs can be trained to fit the observed perfusion MR data while respecting the underlying physical conservation laws.
arXiv Detail & Related papers (2020-11-25T16:02:52Z) - Introducing Anisotropic Minkowski Functionals for Local Structure
Analysis and Prediction of Biomechanical Strength of Proximal Femur Specimens [0.0]
Bone fragility and fracture caused by osteoporosis or injury are prevalent in adults over the age of 50 and can reduce their quality of life.
This study proposes a new method to predict the bone strength of proximal femur specimens from quantitative multi-detector computer tomography (MDCT) images.
arXiv Detail & Related papers (2020-04-02T14:33:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.