Path distributions for describing eigenstates of the harmonic oscillator
and other 1-dimensional problems
- URL: http://arxiv.org/abs/2306.11155v2
- Date: Tue, 8 Aug 2023 09:43:13 GMT
- Title: Path distributions for describing eigenstates of the harmonic oscillator
and other 1-dimensional problems
- Authors: Randall M. Feenstra
- Abstract summary: An integral expression is written that describes the wave function.
The resulting expression can be analyzed using a generalization of stationary-phase analysis.
A somewhat broad distribution is found, peaked at value of momentum that corresponds to a classical energy.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The manner in which probability amplitudes of paths sum up to form wave
functions of a harmonic oscillator, as well as other, simple 1-dimensional
problems, is described. Using known, closed-form, path-based propagators for
each problem, an integral expression is written that describes the wave
function. This expression conventionally takes the form of an integral over
initial locations of a particle, but it is re-expressed here in terms of a
characteristic momentum associated with motion between the endpoints of a path.
In this manner, the resulting expression can be analyzed using a generalization
of stationary-phase analysis, leading to distributions of paths that exactly
describe each eigenstate. These distributions are valid for all travel times,
but when evaluated for long times they turn out to be real, non-negative
functions of the characteristic momentum. For the harmonic oscillator in
particular, a somewhat broad distribution is found, peaked at value of momentum
that corresponds to a classical energy which in turn equals the energy
eigenvalue for the state being described.
Related papers
- Closed-form solutions for the Salpeter equation [41.94295877935867]
We study the propagator of the $1+1$ dimensional Salpeter Hamiltonian, describing a relativistic quantum particle with no spin.
The analytical extension of the Hamiltonian in the complex plane allows us to formulate the equivalent problem, namely the B"aumer equation.
This B"aumera corresponds to the Green function of a relativistic diffusion process that interpolates between Cauchy for small times and Gaussian diffusion for large times.
arXiv Detail & Related papers (2024-06-26T15:52:39Z) - Adiabatic versus instantaneous transitions from a harmonic oscillator to an inverted oscillator [49.1574468325115]
Mean energy increases when the frequency returns to its initial value, and the increment coefficient is determined by the exponent in the power law of the frequency crossing zero.
If the frequency becomes imaginary, the absolute value of mean energy increases exponentially, even in the adiabatic regime.
Small corrections to the leading terms of simple adiabatic approximate formulas are crucial in this case, due to the unstable nature of the motion.
arXiv Detail & Related papers (2024-03-11T02:03:19Z) - Radiative transport in a periodic structure with band crossings [52.24960876753079]
We derive the semi-classical model for the Schr"odinger equation in arbitrary spatial dimensions.
We consider both deterministic and random scenarios.
As a specific application, we deduce the effective dynamics of a wave packet in graphene with randomness.
arXiv Detail & Related papers (2024-02-09T23:34:32Z) - Employing an operator form of the Rodrigues formula to calculate
wavefunctions without differential equations [0.0]
The factorization method of Schrodinger shows us how to determine the energy eigenstates without needing to determine the wavefunctions in position or momentum space.
This approach can be used in either undergraduate or graduate classes in quantum mechanics.
arXiv Detail & Related papers (2023-12-14T20:21:17Z) - Path distributions for describing eigenstates of orbital angular momentum [0.0]
distributions are derived that provide a measure of how paths contribute towards any given eigenstate.
The resulting description provides a replacement for the well-known "vector model" for describing orbital angular momentum.
arXiv Detail & Related papers (2023-08-05T14:00:56Z) - Initial value formulation of a quantum damped harmonic oscillator [0.18416014644193066]
We study the initial state-dependence, decoherence, and thermalization of a quantum damped harmonic oscillator.
We find that the dynamics must include a non-vanishing noise term to yield physical results for the purity.
We briefly consider time-nonlocal dissipation as well, to show that the fluctuation-dissipation relation is satisfied for a specific choice of dissipation kernels.
arXiv Detail & Related papers (2023-03-08T19:03:12Z) - About the quantum Talbot effect on the sphere [77.34726150561087]
The Schr"odinger equation on a circle with an initially localized profile of the wave function is known to give rise to revivals or replications.
The structure of singularities of the resulting wave function is characterized in detail.
It is suggested that, differently from the circle case, these regions are not lines but instead some specific set of points along the sphere.
arXiv Detail & Related papers (2023-02-21T23:38:08Z) - A variational principle, wave-particle duality, and the Schr\"{o}dinger
equation [0.0]
The dynamics of a quantum particle in a one-dimensional configuration space is determined by a variational problem for two functionals.
The true dynamics is described by a wave function for which the variations of these two functionals are equal.
arXiv Detail & Related papers (2022-06-28T12:44:52Z) - Angular Momentum Eigenstates of the Isotropic 3-D Harmonic Oscillator:
Phase-Space Distributions and Coalescence Probabilities [0.0]
We compute the probabilities for coalescence of two distinguishable, non-relativistic particles into a bound state.
We use a phase-space formulation and hence need the Wigner distribution functions of angular momentum eigenstates.
arXiv Detail & Related papers (2021-12-22T23:16:44Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.