論文の概要: Eight challenges in developing theory of intelligence
- arxiv url: http://arxiv.org/abs/2306.11232v1
- Date: Tue, 20 Jun 2023 01:45:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-21 16:02:39.381785
- Title: Eight challenges in developing theory of intelligence
- Title(参考訳): 知能理論の発展における8つの課題
- Authors: Haiping Huang
- Abstract要約: 数学的な美しさのよい理論は、現在のどの観測よりも実用的である。
我々は、この理論のパラダイムに従って知性理論を開発する際の8つの課題に光を当てた。
- 参考スコア(独自算出の注目度): 2.0711789781518752
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A good theory of mathematical beauty is more practical than any current
observation, as new predictions of physical reality can be verified
self-consistently. This belief applies to the current status of understanding
deep neural networks including large language models and even the biological
intelligence. Toy models provide a metaphor of physical reality, allowing
mathematically formulating that reality (i.e., the so-called theory), which can
be updated as more conjectures are justified or refuted. One does not need to
pack all details into a model, but rather, more abstract models are
constructed, as complex systems like brains or deep networks have many sloppy
dimensions but much less stiff dimensions that strongly impact macroscopic
observables. This kind of bottom-up mechanistic modeling is still promising in
the modern era of understanding the natural or artificial intelligence. Here,
we shed light on eight challenges in developing theory of intelligence
following this theoretical paradigm.
- Abstract(参考訳): 数学的美の優れた理論は、物理現実の新しい予測が一貫性を持って検証できるため、現在のどの観測よりも実用的である。
この信念は、大規模な言語モデルや生物学的知性を含むディープニューラルネットワークの理解の現状に当てはまる。
おもちゃモデルは物理的な現実のメタファーを提供し、その現実(いわゆる理論)を数学的に定式化することができる。
脳やディープネットワークのような複雑なシステムには、多くのスロボピー次元があるが、マクロ可観測性に強く影響する剛体次元がはるかに少ないため、すべての詳細をモデルに詰め込む必要はなく、より抽象的なモデルが構築されている。
このようなボトムアップ・メカニスティック・モデリングは、現代でも自然や人工知能を理解する上で有望である。
ここでは、この理論パラダイムに従って知性理論を開発する上での8つの課題について詳述する。
関連論文リスト
- Visual-O1: Understanding Ambiguous Instructions via Multi-modal Multi-turn Chain-of-thoughts Reasoning [53.45295657891099]
本稿では,マルチモーダルなマルチターン・チェーン・オブ・シークレット・推論・フレームワークであるVisual-O1を提案する。
人間のマルチモーダルなマルチターン推論をシミュレートし、高度にインテリジェントなモデルに即時体験を提供する。
私たちの研究は、不確実性と曖昧さのある現実のシナリオにおいて、人工知能が人間のように機能する可能性を強調します。
論文 参考訳(メタデータ) (2024-10-04T11:18:41Z) - Learning Discrete Concepts in Latent Hierarchical Models [73.01229236386148]
自然の高次元データから学習する概念は、ヒューマンアライメントと解釈可能な機械学習モデルの構築の可能性を秘めている。
我々は概念を階層的因果モデルを通して関連付けられた離散潜在因果変数として定式化する。
我々は、理論的な主張を合成データ実験で裏付ける。
論文 参考訳(メタデータ) (2024-06-01T18:01:03Z) - Learning World Models With Hierarchical Temporal Abstractions: A Probabilistic Perspective [2.61072980439312]
内部世界モデルを開発するためのフォーマリズムの開発は、人工知能と機械学習の分野における重要な研究課題である。
この論文は、状態空間モデルを内部世界モデルとして広く用いられることによるいくつかの制限を識別する。
形式主義におけるモデルの構造は、信念の伝播を用いた正確な確率的推論を促進するとともに、時間を通してのバックプロパゲーションによるエンドツーエンドの学習を促進する。
これらの形式主義は、世界の状態における不確実性の概念を統合し、現実世界の性質をエミュレートし、その予測の信頼性を定量化する能力を向上させる。
論文 参考訳(メタデータ) (2024-04-24T12:41:04Z) - Visual Knowledge in the Big Model Era: Retrospect and Prospect [63.282425615863]
視覚知識は、視覚概念とその関係を簡潔で包括的で解釈可能な方法でカプセル化できる新しい知識表現である。
視覚世界に関する知識は、人間の認知と知性にとって欠かせない要素として認識されているため、視覚知識は、機械知性を確立する上で重要な役割を担っていると考えられる。
論文 参考訳(メタデータ) (2024-04-05T07:31:24Z) - Neural Causal Abstractions [63.21695740637627]
我々は、変数とそのドメインをクラスタリングすることで、因果抽象化の新しいファミリーを開発する。
本稿では,ニューラルネットワークモデルを用いて,そのような抽象化が現実的に学習可能であることを示す。
本実験は、画像データを含む高次元設定に因果推論をスケールする方法を記述し、その理論を支持する。
論文 参考訳(メタデータ) (2024-01-05T02:00:27Z) - Quantum-Inspired Neural Network Model of Optical Illusions [0.0]
我々は、ネッカーキューブに対する人間の認識をシミュレートするために、ディープニューラルネットワークモデルを訓練する。
我々の研究結果は、無人航空機の宇宙飛行士やオペレーターの訓練に使用されるビデオゲームや仮想現実システムに応用される。
論文 参考訳(メタデータ) (2023-12-06T12:10:56Z) - Visual cognition in multimodal large language models [12.603212933816206]
近年の進歩は、人間のような認知能力をエミュレートする可能性への関心を再燃させた。
本稿では、直観物理学、因果推論、直観心理学の分野における視覚に基づく大規模言語モデルの現状を評価する。
論文 参考訳(メタデータ) (2023-11-27T18:58:34Z) - Minding Language Models' (Lack of) Theory of Mind: A Plug-and-Play
Multi-Character Belief Tracker [72.09076317574238]
ToMは,読解における文字の信念状態を調べるためのプラグアンドプレイ方式である。
ToMは、教師付きベースラインと比較して、配電性能が堅牢でありながら、ゼロオーダー設定でのオフ・ザ・シェルフニューラルネットワーク理論の考え方を強化する。
論文 参考訳(メタデータ) (2023-06-01T17:24:35Z) - A Mathematical Approach to Constraining Neural Abstraction and the
Mechanisms Needed to Scale to Higher-Order Cognition [0.0]
人工知能はこの10年で大きな進歩を遂げてきたが、人工知能の最もよく知られている例である人間の脳にはまだ及ばない。
神経の過程があまり知られていないため、脳はほんの少しで跳躍を達成できる。
本稿では, グラフ理論とスペクトルグラフ理論を用いた数学的アプローチを提案する。
論文 参考訳(メタデータ) (2021-08-12T02:13:22Z) - Applying Deutsch's concept of good explanations to artificial
intelligence and neuroscience -- an initial exploration [0.0]
深層学習におけるドイツの難しい原則と、より形式化された原則とどのように関連しているかを調査します。
私たちは、人間の脳を見ることで、知能でどのように難しい説明が果たす役割を見ます。
論文 参考訳(メタデータ) (2020-12-16T23:23:22Z) - Machine Common Sense [77.34726150561087]
機械の常識は、人工知能(AI)において広範で潜在的に無拘束な問題のままである
本稿では、対人インタラクションのようなドメインに焦点を当てたコモンセンス推論のモデル化の側面について論じる。
論文 参考訳(メタデータ) (2020-06-15T13:59:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。