論文の概要: FDINet: Protecting against DNN Model Extraction via Feature Distortion Index
- arxiv url: http://arxiv.org/abs/2306.11338v3
- Date: Tue, 22 Oct 2024 16:39:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:25:34.802015
- Title: FDINet: Protecting against DNN Model Extraction via Feature Distortion Index
- Title(参考訳): FDINet:特徴歪指数によるDNNモデル抽出に対する保護
- Authors: Hongwei Yao, Zheng Li, Haiqin Weng, Feng Xue, Zhan Qin, Kui Ren,
- Abstract要約: FDINETは、ディープニューラルネットワーク(DNN)モデルの特徴分布を活用する新しい防御メカニズムである。
FDI類似性を利用して、分散抽出攻撃から衝突する敵を識別する。
FDINETは、91%を超える精度で衝突する敵を識別する能力を示している。
- 参考スコア(独自算出の注目度): 25.69643512837956
- License:
- Abstract: Machine Learning as a Service (MLaaS) platforms have gained popularity due to their accessibility, cost-efficiency, scalability, and rapid development capabilities. However, recent research has highlighted the vulnerability of cloud-based models in MLaaS to model extraction attacks. In this paper, we introduce FDINET, a novel defense mechanism that leverages the feature distribution of deep neural network (DNN) models. Concretely, by analyzing the feature distribution from the adversary's queries, we reveal that the feature distribution of these queries deviates from that of the model's training set. Based on this key observation, we propose Feature Distortion Index (FDI), a metric designed to quantitatively measure the feature distribution deviation of received queries. The proposed FDINET utilizes FDI to train a binary detector and exploits FDI similarity to identify colluding adversaries from distributed extraction attacks. We conduct extensive experiments to evaluate FDINET against six state-of-the-art extraction attacks on four benchmark datasets and four popular model architectures. Empirical results demonstrate the following findings FDINET proves to be highly effective in detecting model extraction, achieving a 100% detection accuracy on DFME and DaST. FDINET is highly efficient, using just 50 queries to raise an extraction alarm with an average confidence of 96.08% for GTSRB. FDINET exhibits the capability to identify colluding adversaries with an accuracy exceeding 91%. Additionally, it demonstrates the ability to detect two types of adaptive attacks.
- Abstract(参考訳): マシンラーニング・アズ・ア・サービス(MLaaS)プラットフォームは、アクセシビリティ、コスト効率、スケーラビリティ、迅速な開発能力によって人気を集めている。
しかし、最近の研究は、MLaaSにおけるクラウドベースのモデルによる抽出攻撃の脆弱性を強調している。
本稿では,ディープニューラルネットワーク(DNN)モデルの特徴分布を利用した新しい防御機構であるFDINETを紹介する。
具体的には、相手のクエリから特徴分布を解析することにより、これらのクエリの特徴分布がモデルのトレーニングセットから逸脱することを明らかにする。
このキーとなる観測に基づいて、受信したクエリの特徴分布の偏差を定量的に測定する指標であるFeature Distortion Index (FDI)を提案する。
提案するFDINETは、FDIを用いてバイナリ検出器を訓練し、FDI類似性を利用して、分散抽出攻撃から衝突する敵を識別する。
我々は4つのベンチマークデータセットと4つの人気のあるモデルアーキテクチャに対する6つの最先端抽出攻撃に対してFDINETを評価するための広範囲な実験を行った。
FDINETは,DFMEとDASTの100%検出精度を達成し,モデル抽出に極めて有効であることが実証された。
FDINETは非常に効率的で、GTSRBでは50クエリで平均96.08%の信頼性を持つ抽出アラームを発生させる。
FDINETは、91%を超える精度で衝突する敵を識別する能力を示している。
さらに、2種類のアダプティブアタックを検出する能力も示す。
関連論文リスト
- Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
本稿では,顔偽造検出に汎用的かつパラメータ効率の高い手法を提案する。
フォージェリー・ソース・ドメインの多様性を増大させるフォージェリー・ミックス・フォーミュレーションを設計する。
設計したモデルは、トレーニング可能なパラメータを著しく減らし、最先端の一般化性を実現する。
論文 参考訳(メタデータ) (2024-08-23T01:53:36Z) - Lazy Layers to Make Fine-Tuned Diffusion Models More Traceable [70.77600345240867]
新たな任意の任意配置(AIAO)戦略は、微調整による除去に耐性を持たせる。
拡散モデルの入力/出力空間のバックドアを設計する既存の手法とは異なり,本手法では,サンプルサブパスの特徴空間にバックドアを埋め込む方法を提案する。
MS-COCO,AFHQ,LSUN,CUB-200,DreamBoothの各データセットに関する実証研究により,AIAOの堅牢性が確認された。
論文 参考訳(メタデータ) (2024-05-01T12:03:39Z) - Machine learning-based network intrusion detection for big and
imbalanced data using oversampling, stacking feature embedding and feature
extraction [6.374540518226326]
侵入検知システム(IDS)は、悪意あるアクターや活動を検出することによって相互接続ネットワークを保護する上で重要な役割を果たす。
本稿では,データ不均衡にRandom Oversampling (RO) を用いる新しいMLベースのネットワーク侵入検出モデルと,次元削減のためのStacking Feature Embedding (PCA)を提案する。
CIC-IDS 2017データセットを使用すると、DT、RF、ETモデルは99.99%の精度に達し、DTとRFモデルはCIC-IDS 2018データセットで99.94%の精度が得られる。
論文 参考訳(メタデータ) (2024-01-22T05:49:41Z) - REB: Reducing Biases in Representation for Industrial Anomaly Detection [16.550844182346314]
本稿では,ドメインバイアスを考慮した表現におけるReduceing Biases (REB)を提案する。
また,特徴空間における局所密度バイアスを低減し,効果的な異常検出を実現するために,局所密度KNN(LDKNN)を提案する。
提案したREB法は,Vgg11やResnet18などの小さなバックボーンネットワークを用いて,広く使用されているMVTec AD上で99.5%のIm.AUROCを実現する。
論文 参考訳(メタデータ) (2023-08-24T05:32:29Z) - TFDPM: Attack detection for cyber-physical systems with diffusion
probabilistic models [10.389972581904999]
CPSにおける攻撃検出タスクの一般的なフレームワークであるTFDPMを提案する。
履歴データから時間パターンと特徴パターンを同時に抽出する。
ノイズスケジューリングネットワークは、検出速度を3倍に向上させる。
論文 参考訳(メタデータ) (2021-12-20T13:13:29Z) - Localization Uncertainty-Based Attention for Object Detection [8.154943252001848]
ガウスモデルを用いて, 4方向位置決めの不確かさを予測できる, より効率的な不確実性認識型高密度検出器 (UADET) を提案する。
MS COCOベンチマークを用いた実験によると、UADETはベースラインFCOSを一貫して上回り、最高のモデルであるResNext-64x4d-101-DCNは、COCOテストデーブで48.3%の単一スケールAPを得る。
論文 参考訳(メタデータ) (2021-08-25T04:32:39Z) - Robust Out-of-Distribution Detection on Deep Probabilistic Generative
Models [0.06372261626436676]
アウト・オブ・ディストリビューション(OOD)検出は機械学習システムにおいて重要な課題である。
深い確率的生成モデルは、データサンプルの可能性を推定することによって、OODの検出を容易にする。
本稿では,外周露光を伴わない新しい検出指標を提案する。
論文 参考訳(メタデータ) (2021-06-15T06:36:10Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoTデバイスは複雑なディープニューラルネットワーク(DNN)モデルにはほとんど余裕がなく、異常検出タスクをクラウドにオフロードすることは長い遅延を引き起こす。
本稿では,分散階層エッジコンピューティング(HEC)システムを対象とした適応型異常検出手法のデモと構築を行う。
提案手法は,検出タスクをクラウドにオフロードした場合と比較して,精度を犠牲にすることなく検出遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2020-04-15T06:13:33Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
本稿では,1回のフォワードパスで,テスト時に分布データポイントの発見と拒否が可能な決定論的ディープモデルを訓練する手法を提案する。
我々は,新しい損失関数とセントロイド更新方式を用いて,これらをスケールトレーニングし,ソフトマックスモデルの精度に適合させる。
論文 参考訳(メタデータ) (2020-03-04T12:27:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。