論文の概要: Computing large deviation prefactors of stochastic dynamical systems
based on machine learning
- arxiv url: http://arxiv.org/abs/2306.11418v1
- Date: Tue, 20 Jun 2023 09:59:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-21 14:53:00.187093
- Title: Computing large deviation prefactors of stochastic dynamical systems
based on machine learning
- Title(参考訳): 機械学習に基づく確率力学系の大規模偏差プレファクタの計算
- Authors: Yang Li, Shenglan Yuan, Linghongzhi Lu, Xianbin Liu
- Abstract要約: 弱い雑音の極限における力学系の希少事象の指数推定を特徴付ける大きな偏差理論を提案する。
我々は、ベクトル場の分解に基づいて、準ポテンシャル、最も確率の高い経路とプレファクタを計算するためのニューラルネットワークフレームワークを設計する。
数値実験は、弱いランダム変動によって引き起こされる稀な事象の内部メカニズムを探索する上で、その強力な機能を示す。
- 参考スコア(独自算出の注目度): 4.474127100870242
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present large deviation theory that characterizes the
exponential estimate for rare events of stochastic dynamical systems in the
limit of weak noise. We aim to consider next-to-leading-order approximation for
more accurate calculation of mean exit time via computing large deviation
prefactors with the research efforts of machine learning. More specifically, we
design a neural network framework to compute quasipotential, most probable
paths and prefactors based on the orthogonal decomposition of vector field. We
corroborate the higher effectiveness and accuracy of our algorithm with a
practical example. Numerical experiments demonstrate its powerful function in
exploring internal mechanism of rare events triggered by weak random
fluctuations.
- Abstract(参考訳): 本稿では,弱雑音の限界における確率力学系の希少事象の指数的推定を特徴付ける大偏差理論を提案する。
本研究は,機械学習による大規模偏差要素の計算を通じて,より正確な平均終了時間の計算を行うために,次から次への近似を検討することを目的とする。
より具体的には、ベクトル場の直交分解に基づく準ポテンシャル、最も確率の高い経路とプレファクタを計算するためのニューラルネットワークフレームワークを設計する。
我々は,本アルゴリズムの有効性と精度を実例で検証した。
数値実験は、弱いランダム変動によって引き起こされる稀な事象の内部メカニズムを探索する上で、その強力な機能を示す。
関連論文リスト
- Predicting Probabilities of Error to Combine Quantization and Early Exiting: QuEE [68.6018458996143]
本稿では,量子化と早期出口動的ネットワークを組み合わせたより一般的な動的ネットワークQuEEを提案する。
我々のアルゴリズムは、ソフトアーリーエグジットや入力依存圧縮の一形態と見なすことができる。
提案手法の重要な要素は、さらなる計算によって実現可能な潜在的な精度向上の正確な予測である。
論文 参考訳(メタデータ) (2024-06-20T15:25:13Z) - Estimating Koopman operators with sketching to provably learn large
scale dynamical systems [37.18243295790146]
クープマン作用素の理論は、複雑な力学系を予測・解析するために非パラメトリック機械学習アルゴリズムを展開できる。
ランダムプロジェクションを用いた異なるカーネルベースのクープマン作用素推定器の効率を向上する。
統計的学習率と計算効率のトレードオフを鋭く評価する非誤り境界を確立する。
論文 参考訳(メタデータ) (2023-06-07T15:30:03Z) - Inexact iterative numerical linear algebra for neural network-based
spectral estimation and rare-event prediction [0.0]
遷移作用素の固有関数を導くことは視覚化に有用である。
我々はこれらの固有関数を計算するための不正確な反復線形代数法を開発する。
論文 参考訳(メタデータ) (2023-03-22T13:07:03Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
既存の不確実性推定アルゴリズムでは、モデルアーキテクチャとトレーニング手順を変更する必要がある。
本研究では、与えられたトレーニングされたニューラルネットワークに適用し、近似予測間隔を生成できる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-06T13:18:31Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
最適化アルゴリズムの一般化誤差は、その一般化尺度の根底にあるフラクタル構造の複雑性'にバウンドできることを示す。
さらに、特定の問題(リニア/ロジスティックレグレッション、隠れ/層ニューラルネットワークなど)とアルゴリズムに対して、結果をさらに専門化します。
論文 参考訳(メタデータ) (2021-06-09T08:05:36Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
ダイナミカルシステムの研究において,連続時間における因果的発見を検討する。
本稿では,ニューラルネットワークを用いた因果探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-05-06T08:48:02Z) - A Machine Learning Framework for Computing the Most Probable Paths of
Stochastic Dynamical Systems [5.028470487310566]
そこで我々は,Onsager-Machlup 行動関数論における最も確率の高い経路を計算するための機械学習フレームワークを開発した。
具体的には、ハミルトニアン系の境界値問題を修正し、プロトタイプニューラルネットワークを設計し、射撃法の欠点を補う。
論文 参考訳(メタデータ) (2020-10-01T20:01:37Z) - Vulnerability Under Adversarial Machine Learning: Bias or Variance? [77.30759061082085]
本研究では,機械学習が訓練された深層ニューラルネットワークのバイアスと分散に与える影響について検討する。
我々の分析は、ディープニューラルネットワークが対向的摂動下で性能が劣っている理由に光を当てている。
本稿では,計算処理の複雑さをよく知られた機械学習手法よりも低く抑えた,新しい逆機械学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-08-01T00:58:54Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
経験的最適化は現代の機械学習の中心であるが、その成功における役割はまだ不明である。
分散による離散乗法雑音のパラメータによく現れることを示す。
最新のステップサイズやデータを含む重要な要素について、詳細な分析を行い、いずれも最先端のニューラルネットワークモデルで同様の結果を示す。
論文 参考訳(メタデータ) (2020-06-11T09:58:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。