論文の概要: Audio-Driven 3D Facial Animation from In-the-Wild Videos
- arxiv url: http://arxiv.org/abs/2306.11541v1
- Date: Tue, 20 Jun 2023 13:53:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-21 14:03:36.564684
- Title: Audio-Driven 3D Facial Animation from In-the-Wild Videos
- Title(参考訳): インザ・ワイルド・ビデオによる音声駆動3d顔アニメーション
- Authors: Liying Lu, Tianke Zhang, Yunfei Liu, Xuangeng Chu, Yu Li
- Abstract要約: 任意のオーディオクリップが与えられたとき、オーディオ駆動の3D顔アニメーションは、ライフスタイルの唇の動きと3Dヘッドのための表情を生成することを目的としている。
既存の方法は、通常、限られた数のオーディオ3Dスキャンペアを含む限られたパブリックな3Dデータセットを使用してモデルをトレーニングすることに依存する。
そこで本研究では,3次元顔アニメーションモデルをトレーニングするために,この2次元対話ヘッドビデオを利用する新しい手法を提案する。
- 参考スコア(独自算出の注目度): 16.76533748243908
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Given an arbitrary audio clip, audio-driven 3D facial animation aims to
generate lifelike lip motions and facial expressions for a 3D head. Existing
methods typically rely on training their models using limited public 3D
datasets that contain a restricted number of audio-3D scan pairs. Consequently,
their generalization capability remains limited. In this paper, we propose a
novel method that leverages in-the-wild 2D talking-head videos to train our 3D
facial animation model. The abundance of easily accessible 2D talking-head
videos equips our model with a robust generalization capability. By combining
these videos with existing 3D face reconstruction methods, our model excels in
generating consistent and high-fidelity lip synchronization. Additionally, our
model proficiently captures the speaking styles of different individuals,
allowing it to generate 3D talking-heads with distinct personal styles.
Extensive qualitative and quantitative experimental results demonstrate the
superiority of our method.
- Abstract(参考訳): 任意のオーディオクリップが与えられたとき、オーディオ駆動の3D顔アニメーションは、ライフスタイルの唇の動きと3Dヘッドのための表情を生成することを目的としている。
既存の方法は通常、限られた数のオーディオ3dスキャンペアを含む限られた公開3dデータセットを使用してモデルをトレーニングする。
そのため、その一般化能力は限られている。
本稿では,3次元顔アニメーションモデルを訓練するために,この2Dビデオを利用した新しい手法を提案する。
簡単にアクセスできる2dトークヘッドビデオの豊富さは、我々のモデルに堅牢な一般化能力を提供する。
これらの映像を既存の3次元顔再構成法と組み合わせることで,一貫した高忠実度唇同期を生成することができる。
さらに,本モデルでは,異なる個人の発話スタイルを巧みに捉え,異なる個人スタイルの3D音声ヘッドを生成する。
大規模定性的および定量的実験により,本手法の優位性を示した。
関連論文リスト
- MMHead: Towards Fine-grained Multi-modal 3D Facial Animation [68.04052669266174]
大規模なマルチモーダル3次元顔アニメーションデータセットMMHeadを構築した。
MMHeadは、49時間の3D顔の動きシーケンス、音声、リッチな階層的なテキストアノテーションで構成されている。
MMHeadデータセットに基づいて,テキストによる3次元対話ヘッドアニメーションとテキストから3次元の顔の動き生成という,2つの新しいタスクのベンチマークを構築した。
論文 参考訳(メタデータ) (2024-10-10T09:37:01Z) - NeRFFaceSpeech: One-shot Audio-driven 3D Talking Head Synthesis via Generative Prior [5.819784482811377]
高品質な3D対応音声ヘッドを作成できる新しい方法NeRFFaceSpeechを提案する。
本手法では,1枚の画像に対応する3次元顔特徴空間を作成できる。
また,リパインネットを導入し,その情報不足を補う。
論文 参考訳(メタデータ) (2024-05-09T13:14:06Z) - EmoVOCA: Speech-Driven Emotional 3D Talking Heads [12.161006152509653]
EmoVOCAと呼ばれる合成データセットを作成するための革新的なデータ駆動手法を提案する。
次に,3次元顔,音声ファイル,感情ラベル,強度値を入力として受け入れる感情的3次元音声ヘッドジェネレータを設計,訓練し,顔の表情特性で音声同期唇の動きをアニメーション化することを学ぶ。
論文 参考訳(メタデータ) (2024-03-19T16:33:26Z) - Media2Face: Co-speech Facial Animation Generation With Multi-Modality
Guidance [41.692420421029695]
本稿では,顔の形状と画像を高一般化された表現潜在空間にマッピングする,効率的な変分自動エンコーダを提案する。
次に、GNPFAを用いて、多数のビデオから高品質な表現と正確な頭部ポーズを抽出する。
GNPFAラテント空間における拡散モデルMedia2Faceを提案する。
論文 参考訳(メタデータ) (2024-01-28T16:17:59Z) - Real3D-Portrait: One-shot Realistic 3D Talking Portrait Synthesis [88.17520303867099]
ワンショットの3Dトーキングポートレート生成は、目に見えない画像から3Dアバターを再構成し、参照ビデオやオーディオでアニメーション化する。
本稿では,大規模な画像-平面モデルを用いて,ワンショット3D再構成能力を向上させるフレームワークであるReal3D-Potraitを提案する。
実験の結果、Real3D-Portraitは目に見えない人物を一般化し、よりリアルなトーキング・ポートレート・ビデオを生成することがわかった。
論文 参考訳(メタデータ) (2024-01-16T17:04:30Z) - AniPortraitGAN: Animatable 3D Portrait Generation from 2D Image
Collections [78.81539337399391]
顔の表情, 頭部ポーズ, 肩の動きを制御可能なポートレート画像を生成するアニマタブルな3D認識型GANを提案する。
これは、3Dやビデオデータを使用しない非構造化2次元画像コレクションで訓練された生成モデルである。
生成した顔の質を向上させるために,デュアルカメラレンダリングと対角学習方式を提案する。
論文 参考訳(メタデータ) (2023-09-05T12:44:57Z) - DF-3DFace: One-to-Many Speech Synchronized 3D Face Animation with
Diffusion [68.85904927374165]
拡散駆動型音声から3次元の顔メッシュ合成であるDF-3DFaceを提案する。
拡散に基づく音声と3次元顔の複雑な一対多関係をキャプチャする。
最先端の手法よりもリアルな顔アニメーションを同時に実現します。
論文 参考訳(メタデータ) (2023-08-23T04:14:55Z) - SadTalker: Learning Realistic 3D Motion Coefficients for Stylized
Audio-Driven Single Image Talking Face Animation [33.651156455111916]
本稿では,3DMMの3次元動き係数(頭部ポーズ,表情)を音声から生成するSadTalkerを提案する。
正確には、3Dレンダリングされた顔の両係数を蒸留することにより、音声から正確な表情を学習するExpNetを提案する。
論文 参考訳(メタデータ) (2022-11-22T11:35:07Z) - Learning Speech-driven 3D Conversational Gestures from Video [106.15628979352738]
同期3D対話体と手のジェスチャーの両方を自動的に共同合成する最初のアプローチを提案します。
本アルゴリズムは,表情と手のジェスチャーの固有相関を利用したcnnアーキテクチャを用いる。
われわれはまた、33時間以上の注釈付きボディ、手、顔データからなる大きなコーパスを作成する新しい方法にも貢献する。
論文 参考訳(メタデータ) (2021-02-13T01:05:39Z) - Audio- and Gaze-driven Facial Animation of Codec Avatars [149.0094713268313]
音声および/またはアイトラッキングを用いて,コーデックアバターをリアルタイムにアニメーション化するための最初のアプローチについて述べる。
私たちのゴールは、重要な社会的シグナルを示す個人間の表現力のある会話を表示することです。
論文 参考訳(メタデータ) (2020-08-11T22:28:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。