FAIR: A Causal Framework for Accurately Inferring Judgments Reversals
- URL: http://arxiv.org/abs/2306.11585v2
- Date: Thu, 20 Jul 2023 14:31:10 GMT
- Title: FAIR: A Causal Framework for Accurately Inferring Judgments Reversals
- Authors: Minghua He, Nanfei Gu, Yuntao Shi, Qionghui Zhang, Yaying Chen
- Abstract summary: We propose a causal Framework for Accurately Inferring case Reversals (FAIR)
We mine the causes of judgments reversals by causal inference methods and inject the obtained causal relationships into the neural network as a priori knowledge.
Our framework can tap the most critical factors in judgments reversal, and the obtained causal relationships can effectively improve the neural network's performance.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial intelligence researchers have made significant advances in legal
intelligence in recent years. However, the existing studies have not focused on
the important value embedded in judgments reversals, which limits the
improvement of the efficiency of legal intelligence. In this paper, we propose
a causal Framework for Accurately Inferring case Reversals (FAIR), which models
the problem of judgments reversals based on real Chinese judgments. We mine the
causes of judgments reversals by causal inference methods and inject the
obtained causal relationships into the neural network as a priori knowledge.
And then, our framework is validated on a challenging dataset as a legal
judgment prediction task. The experimental results show that our framework can
tap the most critical factors in judgments reversal, and the obtained causal
relationships can effectively improve the neural network's performance. In
addition, we discuss the generalization ability of large language models for
legal intelligence tasks using ChatGPT as an example. Our experiment has found
that the generalization ability of large language models still has defects, and
mining causal relationships can effectively improve the accuracy and explain
ability of model predictions.
Related papers
- Controlling Risk of Retrieval-augmented Generation: A Counterfactual Prompting Framework [77.45983464131977]
We focus on how likely it is that a RAG model's prediction is incorrect, resulting in uncontrollable risks in real-world applications.
Our research identifies two critical latent factors affecting RAG's confidence in its predictions.
We develop a counterfactual prompting framework that induces the models to alter these factors and analyzes the effect on their answers.
arXiv Detail & Related papers (2024-09-24T14:52:14Z) - Cause and Effect: Can Large Language Models Truly Understand Causality? [1.2334534968968969]
This research proposes a novel architecture called Context Aware Reasoning Enhancement with Counterfactual Analysis(CARE CA) framework.
The proposed framework incorporates an explicit causal detection module with ConceptNet and counterfactual statements, as well as implicit causal detection through Large Language Models.
The knowledge from ConceptNet enhances the performance of multiple causal reasoning tasks such as causal discovery, causal identification and counterfactual reasoning.
arXiv Detail & Related papers (2024-02-28T08:02:14Z) - Interpretable Imitation Learning with Dynamic Causal Relations [65.18456572421702]
We propose to expose captured knowledge in the form of a directed acyclic causal graph.
We also design this causal discovery process to be state-dependent, enabling it to model the dynamics in latent causal graphs.
The proposed framework is composed of three parts: a dynamic causal discovery module, a causality encoding module, and a prediction module, and is trained in an end-to-end manner.
arXiv Detail & Related papers (2023-09-30T20:59:42Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - Demystifying Causal Features on Adversarial Examples and Causal
Inoculation for Robust Network by Adversarial Instrumental Variable
Regression [32.727673706238086]
We propose a way of delving into the unexpected vulnerability in adversarially trained networks from a causal perspective.
By deploying it, we estimate the causal relation of adversarial prediction under an unbiased environment.
We demonstrate that the estimated causal features are highly related to the correct prediction for adversarial robustness.
arXiv Detail & Related papers (2023-03-02T08:18:22Z) - Evaluation of Induced Expert Knowledge in Causal Structure Learning by
NOTEARS [1.5469452301122175]
We study the impact of expert knowledge on causal relations in the form of additional constraints used in the formulation of the nonparametric NOTEARS model.
We found that (i) knowledge that corrects the mistakes of the NOTEARS model can lead to statistically significant improvements, (ii) constraints on active edges have a larger positive impact on causal discovery than inactive edges, and surprisingly, (iii) the induced knowledge does not correct on average more incorrect active and/or inactive edges than expected.
arXiv Detail & Related papers (2023-01-04T20:39:39Z) - CausalDialogue: Modeling Utterance-level Causality in Conversations [83.03604651485327]
We have compiled and expanded upon a new dataset called CausalDialogue through crowd-sourcing.
This dataset includes multiple cause-effect pairs within a directed acyclic graph (DAG) structure.
We propose a causality-enhanced method called Exponential Average Treatment Effect (ExMATE) to enhance the impact of causality at the utterance level in training neural conversation models.
arXiv Detail & Related papers (2022-12-20T18:31:50Z) - Everything Has a Cause: Leveraging Causal Inference in Legal Text
Analysis [62.44432226563088]
Causal inference is the process of capturing cause-effect relationship among variables.
We propose a novel Graph-based Causal Inference framework, which builds causal graphs from fact descriptions without much human involvement.
We observe that the causal knowledge contained in GCI can be effectively injected into powerful neural networks for better performance and interpretability.
arXiv Detail & Related papers (2021-04-19T16:13:10Z) - Learning Causal Semantic Representation for Out-of-Distribution
Prediction [125.38836464226092]
We propose a Causal Semantic Generative model (CSG) based on a causal reasoning so that the two factors are modeled separately.
We show that CSG can identify the semantic factor by fitting training data, and this semantic-identification guarantees the boundedness of OOD generalization error.
arXiv Detail & Related papers (2020-11-03T13:16:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.