Cause and Effect: Can Large Language Models Truly Understand Causality?
- URL: http://arxiv.org/abs/2402.18139v3
- Date: Mon, 30 Sep 2024 00:40:00 GMT
- Title: Cause and Effect: Can Large Language Models Truly Understand Causality?
- Authors: Swagata Ashwani, Kshiteesh Hegde, Nishith Reddy Mannuru, Mayank Jindal, Dushyant Singh Sengar, Krishna Chaitanya Rao Kathala, Dishant Banga, Vinija Jain, Aman Chadha,
- Abstract summary: This research proposes a novel architecture called Context Aware Reasoning Enhancement with Counterfactual Analysis(CARE CA) framework.
The proposed framework incorporates an explicit causal detection module with ConceptNet and counterfactual statements, as well as implicit causal detection through Large Language Models.
The knowledge from ConceptNet enhances the performance of multiple causal reasoning tasks such as causal discovery, causal identification and counterfactual reasoning.
- Score: 1.2334534968968969
- License:
- Abstract: With the rise of Large Language Models(LLMs), it has become crucial to understand their capabilities and limitations in deciphering and explaining the complex web of causal relationships that language entails. Current methods use either explicit or implicit causal reasoning, yet there is a strong need for a unified approach combining both to tackle a wide array of causal relationships more effectively. This research proposes a novel architecture called Context Aware Reasoning Enhancement with Counterfactual Analysis(CARE CA) framework to enhance causal reasoning and explainability. The proposed framework incorporates an explicit causal detection module with ConceptNet and counterfactual statements, as well as implicit causal detection through LLMs. Our framework goes one step further with a layer of counterfactual explanations to accentuate LLMs understanding of causality. The knowledge from ConceptNet enhances the performance of multiple causal reasoning tasks such as causal discovery, causal identification and counterfactual reasoning. The counterfactual sentences add explicit knowledge of the not caused by scenarios. By combining these powerful modules, our model aims to provide a deeper understanding of causal relationships, enabling enhanced interpretability. Evaluation of benchmark datasets shows improved performance across all metrics, such as accuracy, precision, recall, and F1 scores. We also introduce CausalNet, a new dataset accompanied by our code, to facilitate further research in this domain.
Related papers
- Language Agents Meet Causality -- Bridging LLMs and Causal World Models [50.79984529172807]
We propose a framework that integrates causal representation learning with large language models.
This framework learns a causal world model, with causal variables linked to natural language expressions.
We evaluate the framework on causal inference and planning tasks across temporal scales and environmental complexities.
arXiv Detail & Related papers (2024-10-25T18:36:37Z) - Causal Reasoning in Large Language Models: A Knowledge Graph Approach [6.5344638992876085]
Large language models (LLMs) typically improve performance by either retrieving semantically similar information, or enhancing reasoning abilities through structured prompts like chain-of-thought.
This paper proposes a knowledge graph (KG)-based random-walk reasoning approach that leverages causal relationships.
arXiv Detail & Related papers (2024-10-15T13:24:44Z) - CausalBench: A Comprehensive Benchmark for Causal Learning Capability of LLMs [27.362012903540492]
The ability to understand causality significantly impacts the competence of large language models (LLMs) in output explanation and counterfactual reasoning.
The ability to understand causality significantly impacts the competence of large language models (LLMs) in output explanation and counterfactual reasoning.
arXiv Detail & Related papers (2024-04-09T14:40:08Z) - Is Knowledge All Large Language Models Needed for Causal Reasoning? [11.476877330365664]
This paper explores the causal reasoning of large language models (LLMs) to enhance their interpretability and reliability in advancing artificial intelligence.
We propose a novel causal attribution model that utilizes do-operators" for constructing counterfactual scenarios.
arXiv Detail & Related papers (2023-12-30T04:51:46Z) - Concise and Organized Perception Facilitates Reasoning in Large Language Models [32.71672086718057]
We show that large language models (LLMs) exhibit failure patterns akin to human-like cognitive biases when dealing with disordered and irrelevant content in reasoning tasks.
We propose a novel reasoning approach named Concise and Organized Perception (COP)
COP carefully analyzes the given statements to identify the most pertinent information while eliminating redundancy efficiently.
arXiv Detail & Related papers (2023-10-05T04:47:49Z) - Inducing Causal Structure for Abstractive Text Summarization [76.1000380429553]
We introduce a Structural Causal Model (SCM) to induce the underlying causal structure of the summarization data.
We propose a Causality Inspired Sequence-to-Sequence model (CI-Seq2Seq) to learn the causal representations that can mimic the causal factors.
Experimental results on two widely used text summarization datasets demonstrate the advantages of our approach.
arXiv Detail & Related papers (2023-08-24T16:06:36Z) - Towards CausalGPT: A Multi-Agent Approach for Faithful Knowledge Reasoning via Promoting Causal Consistency in LLMs [60.244412212130264]
Causal-Consistency Chain-of-Thought harnesses multi-agent collaboration to bolster the faithfulness and causality of foundation models.
Our framework demonstrates significant superiority over state-of-the-art methods through extensive and comprehensive evaluations.
arXiv Detail & Related papers (2023-08-23T04:59:21Z) - Modeling Hierarchical Reasoning Chains by Linking Discourse Units and
Key Phrases for Reading Comprehension [80.99865844249106]
We propose a holistic graph network (HGN) which deals with context at both discourse level and word level, as the basis for logical reasoning.
Specifically, node-level and type-level relations, which can be interpreted as bridges in the reasoning process, are modeled by a hierarchical interaction mechanism.
arXiv Detail & Related papers (2023-06-21T07:34:27Z) - The Magic of IF: Investigating Causal Reasoning Abilities in Large
Language Models of Code [74.3873029963285]
Causal reasoning, the ability to identify cause-and-effect relationship, is crucial in human thinking.
We show that Code-LLMs with code prompts are significantly better in causal reasoning.
arXiv Detail & Related papers (2023-05-30T17:02:58Z) - Everything Has a Cause: Leveraging Causal Inference in Legal Text
Analysis [62.44432226563088]
Causal inference is the process of capturing cause-effect relationship among variables.
We propose a novel Graph-based Causal Inference framework, which builds causal graphs from fact descriptions without much human involvement.
We observe that the causal knowledge contained in GCI can be effectively injected into powerful neural networks for better performance and interpretability.
arXiv Detail & Related papers (2021-04-19T16:13:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.