論文の概要: Sampling from Gaussian Process Posteriors using Stochastic Gradient
Descent
- arxiv url: http://arxiv.org/abs/2306.11589v3
- Date: Tue, 16 Jan 2024 03:46:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-18 02:19:16.346645
- Title: Sampling from Gaussian Process Posteriors using Stochastic Gradient
Descent
- Title(参考訳): 確率勾配Descence を用いたガウスプロセス後部からのサンプリング
- Authors: Jihao Andreas Lin and Javier Antor\'an and Shreyas Padhy and David
Janz and Jos\'e Miguel Hern\'andez-Lobato and Alexander Terenin
- Abstract要約: 勾配アルゴリズムは線形系を解くのに有効な方法である。
最適値に収束しない場合であっても,勾配降下は正確な予測を導出することを示す。
実験的に、勾配降下は十分に大規模または不条件の回帰タスクにおいて最先端の性能を達成する。
- 参考スコア(独自算出の注目度): 43.097493761380186
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gaussian processes are a powerful framework for quantifying uncertainty and
for sequential decision-making but are limited by the requirement of solving
linear systems. In general, this has a cubic cost in dataset size and is
sensitive to conditioning. We explore stochastic gradient algorithms as a
computationally efficient method of approximately solving these linear systems:
we develop low-variance optimization objectives for sampling from the posterior
and extend these to inducing points. Counterintuitively, stochastic gradient
descent often produces accurate predictions, even in cases where it does not
converge quickly to the optimum. We explain this through a spectral
characterization of the implicit bias from non-convergence. We show that
stochastic gradient descent produces predictive distributions close to the true
posterior both in regions with sufficient data coverage, and in regions
sufficiently far away from the data. Experimentally, stochastic gradient
descent achieves state-of-the-art performance on sufficiently large-scale or
ill-conditioned regression tasks. Its uncertainty estimates match the
performance of significantly more expensive baselines on a large-scale Bayesian
optimization task.
- Abstract(参考訳): ガウス過程は不確実性の定量化とシーケンシャルな意思決定のための強力なフレームワークであるが、線形システムを解く必要性によって制限されている。
一般に、これはデータセットのサイズが立方体コストであり、条件付けに敏感である。
確率勾配アルゴリズムを線形系を近似的に解くための計算効率の良い手法として検討し, 後方からサンプリングする低分散最適化目標を開発し, 誘導点まで拡張する。
反対に、確率勾配勾配は、最適値に急速に収束しない場合でも、しばしば正確な予測をもたらす。
非収束性からの暗黙バイアスのスペクトル的評価によりこれを説明できる。
確率勾配降下は、十分なデータカバレッジを持つ領域と、データから十分に離れた領域の両方において、真の後部に近い予測分布を生成する。
実験的に、確率勾配降下は十分に大規模または不条件の回帰タスクにおいて最先端の性能を達成する。
その不確実性推定は、大規模なベイズ最適化タスクにおいて、はるかに高価なベースラインの性能と一致する。
関連論文リスト
- Stochastic Gradient Descent for Gaussian Processes Done Right [86.83678041846971]
emphdone right -- 最適化とカーネルコミュニティからの具体的な洞察を使用するという意味で -- が、勾配降下は非常に効果的であることを示している。
本稿では,直感的に設計を記述し,設計選択について説明する。
本手法は,分子結合親和性予測のための最先端グラフニューラルネットワークと同程度にガウス過程の回帰を配置する。
論文 参考訳(メタデータ) (2023-10-31T16:15:13Z) - Robust Stochastic Optimization via Gradient Quantile Clipping [6.2844649973308835]
グラディエントDescent(SGD)のための量子クリッピング戦略を導入する。
通常のクリッピングチェーンとして、グラデーション・ニュー・アウトリージを使用します。
本稿では,Huberiles を用いたアルゴリズムの実装を提案する。
論文 参考訳(メタデータ) (2023-09-29T15:24:48Z) - Stochastic Marginal Likelihood Gradients using Neural Tangent Kernels [78.6096486885658]
線形化されたラプラス近似に下界を導入する。
これらの境界は漸進的な最適化が可能であり、推定精度と計算複雑性とのトレードオフを可能にする。
論文 参考訳(メタデータ) (2023-06-06T19:02:57Z) - Convergence of First-Order Methods for Constrained Nonconvex
Optimization with Dependent Data [7.513100214864646]
収束$tildeO(t-1/4)$とMoreautildeO(vareps-4)$がスムーズな非最適化のために最悪の場合の複雑性を示す。
適応的なステップサイズと最適収束度を持つ投影勾配法に基づく従属データに対する最初のオンライン非負行列分解アルゴリズムを得る。
論文 参考訳(メタデータ) (2022-03-29T17:59:10Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
ストリーミング$p$のサンプルから重み付き統計推定の課題を考察する。
そこで我々は,傾きの雑音に対して,よりニュアンスな条件下での傾きの傾きの低下を設計し,より詳細な解析を行う。
論文 参考訳(メタデータ) (2021-08-25T21:30:27Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sample (AIS) と関連するアルゴリズムは、限界推定のための非常に効果的なツールである。
差別性は、目的として限界確率を最適化する可能性を認めるため、望ましい性質である。
我々はメトロポリス・ハスティングスのステップを放棄して微分可能アルゴリズムを提案し、ミニバッチ計算をさらに解き放つ。
論文 参考訳(メタデータ) (2021-07-21T17:10:14Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
この作業は、一階情報を必要としない零次最適化(ZO)の反復である。
座標重要度サンプリングにおける優雅な設計により,ZO最適化法は複雑度と関数クエリコストの両面において効率的であることを示す。
論文 参考訳(メタデータ) (2020-12-21T17:29:58Z) - Non-asymptotic bounds for stochastic optimization with biased noisy
gradient oracles [8.655294504286635]
関数の測定値が推定誤差を持つ設定を捉えるために,バイアス付き勾配オラクルを導入する。
提案するオラクルは,例えば,独立分散シミュレーションと同一分散シミュレーションのバッチによるリスク計測推定の実践的な状況にある。
論文 参考訳(メタデータ) (2020-02-26T12:53:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。