FedNoisy: Federated Noisy Label Learning Benchmark
- URL: http://arxiv.org/abs/2306.11650v3
- Date: Thu, 30 May 2024 06:16:19 GMT
- Title: FedNoisy: Federated Noisy Label Learning Benchmark
- Authors: Siqi Liang, Jintao Huang, Junyuan Hong, Dun Zeng, Jiayu Zhou, Zenglin Xu,
- Abstract summary: Federated learning has gained popularity for distributed learning without aggregating sensitive data from clients.
The distributed and isolated nature of data isolation may be complicated by data quality, making it more vulnerable to noisy labels.
We serve the first standardized benchmark that can help researchers fully explore potential federated noisy settings.
- Score: 53.73816587601204
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning has gained popularity for distributed learning without aggregating sensitive data from clients. But meanwhile, the distributed and isolated nature of data isolation may be complicated by data quality, making it more vulnerable to noisy labels. Many efforts exist to defend against the negative impacts of noisy labels in centralized or federated settings. However, there is a lack of a benchmark that comprehensively considers the impact of noisy labels in a wide variety of typical FL settings. In this work, we serve the first standardized benchmark that can help researchers fully explore potential federated noisy settings. Also, we conduct comprehensive experiments to explore the characteristics of these data settings and unravel challenging scenarios on the federated noisy label learning, which may guide method development in the future. We highlight the 20 basic settings for more than 5 datasets proposed in our benchmark and standardized simulation pipeline for federated noisy label learning. We hope this benchmark can facilitate idea verification in federated learning with noisy labels. \texttt{FedNoisy} is available at \codeword{https://github.com/SMILELab-FL/FedNoisy}.
Related papers
- Group Benefits Instances Selection for Data Purification [21.977432359384835]
Existing methods for combating label noise are typically designed and tested on synthetic datasets.
We propose a method named GRIP to alleviate the noisy label problem for both synthetic and real-world datasets.
arXiv Detail & Related papers (2024-03-23T03:06:19Z) - Channel-Wise Contrastive Learning for Learning with Noisy Labels [60.46434734808148]
We introduce channel-wise contrastive learning (CWCL) to distinguish authentic label information from noise.
Unlike conventional instance-wise contrastive learning (IWCL), CWCL tends to yield more nuanced and resilient features aligned with the authentic labels.
Our strategy is twofold: firstly, using CWCL to extract pertinent features to identify cleanly labeled samples, and secondly, progressively fine-tuning using these samples.
arXiv Detail & Related papers (2023-08-14T06:04:50Z) - Co-Learning Meets Stitch-Up for Noisy Multi-label Visual Recognition [70.00984078351927]
This paper focuses on reducing noise based on some inherent properties of multi-label classification and long-tailed learning under noisy cases.
We propose a Stitch-Up augmentation to synthesize a cleaner sample, which directly reduces multi-label noise.
A Heterogeneous Co-Learning framework is further designed to leverage the inconsistency between long-tailed and balanced distributions.
arXiv Detail & Related papers (2023-07-03T09:20:28Z) - FedNoRo: Towards Noise-Robust Federated Learning by Addressing Class
Imbalance and Label Noise Heterogeneity [29.68112244504151]
Federated noisy label learning (FNLL) is emerging as a promising tool for privacy-preserving decentralized learning.
We first formulate a new and more realistic federated label noise problem where global data is class-imbalanced and label noise is heterogeneous.
We propose a two-stage framework named FedNoRo for noise-robust federated learning.
arXiv Detail & Related papers (2023-05-09T07:45:55Z) - Towards Federated Learning against Noisy Labels via Local
Self-Regularization [11.077889765623588]
Federated learning (FL) aims to learn joint knowledge from a large scale of decentralized devices with labeled data in a privacy-preserving manner.
Since high-quality labeled data require expensive human intelligence and efforts, data with incorrect labels (called noisy labels) are ubiquitous in reality.
We propose a Local Self-Regularization method, which effectively regularizes the local training process via implicitly hindering the model from memorizing noisy labels.
arXiv Detail & Related papers (2022-08-25T04:03:12Z) - FedNoiL: A Simple Two-Level Sampling Method for Federated Learning with
Noisy Labels [49.47228898303909]
Federated learning (FL) aims at training a global model on the server side while the training data are collected and located at the local devices.
Local training on noisy labels can easily result in overfitting to noisy labels, which is devastating to the global model through aggregation.
We develop a simple two-level sampling method "FedNoiL" that selects clients for more robust global aggregation on the server.
arXiv Detail & Related papers (2022-05-20T12:06:39Z) - Learning with Noisy Labels Revisited: A Study Using Real-World Human
Annotations [54.400167806154535]
Existing research on learning with noisy labels mainly focuses on synthetic label noise.
This work presents two new benchmark datasets (CIFAR-10N, CIFAR-100N)
We show that real-world noisy labels follow an instance-dependent pattern rather than the classically adopted class-dependent ones.
arXiv Detail & Related papers (2021-10-22T22:42:11Z) - Learning to Aggregate and Refine Noisy Labels for Visual Sentiment
Analysis [69.48582264712854]
We propose a robust learning method to perform robust visual sentiment analysis.
Our method relies on an external memory to aggregate and filter noisy labels during training.
We establish a benchmark for visual sentiment analysis with label noise using publicly available datasets.
arXiv Detail & Related papers (2021-09-15T18:18:28Z) - EvidentialMix: Learning with Combined Open-set and Closed-set Noisy
Labels [30.268962418683955]
We study a new variant of the noisy label problem that combines the open-set and closed-set noisy labels.
Our results show that our method produces superior classification results and better feature representations than previous state-of-the-art methods.
arXiv Detail & Related papers (2020-11-11T11:15:32Z) - Label Noise Types and Their Effects on Deep Learning [0.0]
In this work, we provide a detailed analysis of the effects of different kinds of label noise on learning.
We propose a generic framework to generate feature-dependent label noise, which we show to be the most challenging case for learning.
For the ease of other researchers to test their algorithms with noisy labels, we share corrupted labels for the most commonly used benchmark datasets.
arXiv Detail & Related papers (2020-03-23T18:03:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.