Group Benefits Instances Selection for Data Purification
- URL: http://arxiv.org/abs/2403.15694v1
- Date: Sat, 23 Mar 2024 03:06:19 GMT
- Title: Group Benefits Instances Selection for Data Purification
- Authors: Zhenhuang Cai, Chuanyi Zhang, Dan Huang, Yuanbo Chen, Xiuyun Guan, Yazhou Yao,
- Abstract summary: Existing methods for combating label noise are typically designed and tested on synthetic datasets.
We propose a method named GRIP to alleviate the noisy label problem for both synthetic and real-world datasets.
- Score: 21.977432359384835
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Manually annotating datasets for training deep models is very labor-intensive and time-consuming. To overcome such inferiority, directly leveraging web images to conduct training data becomes a natural choice. Nevertheless, the presence of label noise in web data usually degrades the model performance. Existing methods for combating label noise are typically designed and tested on synthetic noisy datasets. However, they tend to fail to achieve satisfying results on real-world noisy datasets. To this end, we propose a method named GRIP to alleviate the noisy label problem for both synthetic and real-world datasets. Specifically, GRIP utilizes a group regularization strategy that estimates class soft labels to improve noise robustness. Soft label supervision reduces overfitting on noisy labels and learns inter-class similarities to benefit classification. Furthermore, an instance purification operation globally identifies noisy labels by measuring the difference between each training sample and its class soft label. Through operations at both group and instance levels, our approach integrates the advantages of noise-robust and noise-cleaning methods and remarkably alleviates the performance degradation caused by noisy labels. Comprehensive experimental results on synthetic and real-world datasets demonstrate the superiority of GRIP over the existing state-of-the-art methods.
Related papers
- NoisyAG-News: A Benchmark for Addressing Instance-Dependent Noise in Text Classification [7.464154519547575]
Existing research on learning with noisy labels predominantly focuses on synthetic noise patterns.
We constructed a benchmark dataset to better understand label noise in real-world text classification settings.
Our findings reveal that while pre-trained models are resilient to synthetic noise, they struggle against instance-dependent noise.
arXiv Detail & Related papers (2024-07-09T06:18:40Z) - Extracting Clean and Balanced Subset for Noisy Long-tailed Classification [66.47809135771698]
We develop a novel pseudo labeling method using class prototypes from the perspective of distribution matching.
By setting a manually-specific probability measure, we can reduce the side-effects of noisy and long-tailed data simultaneously.
Our method can extract this class-balanced subset with clean labels, which brings effective performance gains for long-tailed classification with label noise.
arXiv Detail & Related papers (2024-04-10T07:34:37Z) - Noisy Label Processing for Classification: A Survey [2.8821062918162146]
In the long, tedious process of data annotation, annotators are prone to make mistakes, resulting in incorrect labels of images.
It is crucial to combat noisy labels for computer vision tasks, especially for classification tasks.
We propose an algorithm to generate a synthetic label noise pattern guided by real-world data.
arXiv Detail & Related papers (2024-04-05T15:11:09Z) - Learning with Imbalanced Noisy Data by Preventing Bias in Sample
Selection [82.43311784594384]
Real-world datasets contain not only noisy labels but also class imbalance.
We propose a simple yet effective method to address noisy labels in imbalanced datasets.
arXiv Detail & Related papers (2024-02-17T10:34:53Z) - Combating Label Noise With A General Surrogate Model For Sample
Selection [84.61367781175984]
We propose to leverage the vision-language surrogate model CLIP to filter noisy samples automatically.
We validate the effectiveness of our proposed method on both real-world and synthetic noisy datasets.
arXiv Detail & Related papers (2023-10-16T14:43:27Z) - Generating the Ground Truth: Synthetic Data for Soft Label and Label Noise Research [0.0]
We introduce SYNLABEL, a framework designed to create noiseless datasets informed by real-world data.
We demonstrate its ability to precisely quantify label noise and its improvement over existing methodologies.
arXiv Detail & Related papers (2023-09-08T13:31:06Z) - NoisywikiHow: A Benchmark for Learning with Real-world Noisy Labels in
Natural Language Processing [26.678589684142548]
Large-scale datasets in the real world inevitably involve label noise.
Deep models can gradually overfit noisy labels and thus degrade generalization performance.
To mitigate the effects of label noise, learning with noisy labels (LNL) methods are designed to achieve better generalization performance.
arXiv Detail & Related papers (2023-05-18T05:01:04Z) - Neighborhood Collective Estimation for Noisy Label Identification and
Correction [92.20697827784426]
Learning with noisy labels (LNL) aims at designing strategies to improve model performance and generalization by mitigating the effects of model overfitting to noisy labels.
Recent advances employ the predicted label distributions of individual samples to perform noise verification and noisy label correction, easily giving rise to confirmation bias.
We propose Neighborhood Collective Estimation, in which the predictive reliability of a candidate sample is re-estimated by contrasting it against its feature-space nearest neighbors.
arXiv Detail & Related papers (2022-08-05T14:47:22Z) - PARS: Pseudo-Label Aware Robust Sample Selection for Learning with Noisy
Labels [5.758073912084364]
We propose PARS: Pseudo-Label Aware Robust Sample Selection.
PARS exploits all training samples using both the raw/noisy labels and estimated/refurbished pseudo-labels via self-training.
Results show that PARS significantly outperforms the state of the art on extensive studies on the noisy CIFAR-10 and CIFAR-100 datasets.
arXiv Detail & Related papers (2022-01-26T09:31:55Z) - Learning with Noisy Labels Revisited: A Study Using Real-World Human
Annotations [54.400167806154535]
Existing research on learning with noisy labels mainly focuses on synthetic label noise.
This work presents two new benchmark datasets (CIFAR-10N, CIFAR-100N)
We show that real-world noisy labels follow an instance-dependent pattern rather than the classically adopted class-dependent ones.
arXiv Detail & Related papers (2021-10-22T22:42:11Z) - Tackling Instance-Dependent Label Noise via a Universal Probabilistic
Model [80.91927573604438]
This paper proposes a simple yet universal probabilistic model, which explicitly relates noisy labels to their instances.
Experiments on datasets with both synthetic and real-world label noise verify that the proposed method yields significant improvements on robustness.
arXiv Detail & Related papers (2021-01-14T05:43:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.