What is \textit{Quantum} in Probabilistic Explanations of the Sure Thing
Principle Violation?
- URL: http://arxiv.org/abs/2306.11947v1
- Date: Wed, 21 Jun 2023 00:01:01 GMT
- Title: What is \textit{Quantum} in Probabilistic Explanations of the Sure Thing
Principle Violation?
- Authors: Nematollah Farhadi Mahalli and Onur Pusuluk
- Abstract summary: The Prisoner's Dilemma game (PDG) is one of the simple test-beds for the probabilistic nature of the human decision-making process.
Quantum probabilistic models can explain this violation as a second-order interference effect.
We discuss the role of other quantum information-theoretical quantities, such as quantum entanglement, in the decision-making process.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Prisoner's Dilemma game (PDG) is one of the simple test-beds for the
probabilistic nature of the human decision-making process. Behavioral
experiments have been conducted on this game for decades and show a violation
of the so-called \textit{sure thing principle}, a key principle in the rational
theory of decision. Quantum probabilistic models can explain this violation as
a second-order interference effect, which cannot be accounted for by classical
probability theory. Here, we adopt the framework of generalized probabilistic
theories and approach this explanation from the viewpoint of quantum
information theory to identify the source of the interference. In particular,
we reformulate one of the existing quantum probabilistic models using density
matrix formalism and consider different amounts of classical and quantum
uncertainties for one player's prediction about another player's action in PDG.
This enables us to demonstrate that what makes possible the explanation of the
violation is the presence of \textit{quantum coherence} in the player's initial
prediction and its conversion to probabilities during the dynamics. Moreover,
we discuss the role of other quantum information-theoretical quantities, such
as quantum entanglement, in the decision-making process. Finally, we propose a
three-choice extension of the PDG to compare the predictive powers of quantum
probability theory and a more general probabilistic theory that includes it as
a particular case and exhibits third-order interference.
Related papers
- Hidden variable theory for non-relativistic QED: the critical role of selection rules [0.0]
We propose a hidden variable theory compatible with non-relativistic quantum electrodynamics.
Our approach introduces logical variables to describe propositions about the occupation of stationary states.
It successfully describes the essential properties of individual trials.
arXiv Detail & Related papers (2024-10-23T23:25:53Z) - On the applicability of Kolmogorov's theory of probability to the description of quantum phenomena. Part I [0.0]
I show that it is possible to construct a mathematically rigorous theory based on Kolmogorov's axioms and physically natural random variables.
The approach can in principle be adapted to other classes of quantum-mechanical models.
arXiv Detail & Related papers (2024-05-09T12:11:28Z) - Testing trajectory-based determinism via time probability distributions [44.99833362998488]
Bohmian mechanics (BM) has inherited more predictive power than quantum mechanics (QM)
We introduce a prescription for constructing a flight-time probability distribution within generic trajectory-equipped theories.
We derive probability distributions that are unreachable by QM.
arXiv Detail & Related papers (2024-04-15T11:36:38Z) - A Short Report on the Probability-Based Interpretation of Quantum Mechanics [0.0]
Popper notices how fundamental issues raised in quantum mechanics (QM) directly derive from unresolved probabilistic questions.
This paper offers a brief overview of the structural theory of probability, recently published in a book, and applies it to QM in order to show its completeness.
The whole probability-based interpretation of QM goes beyond the limits of a paper and these pages condense a few aspects of this theoretical scheme.
arXiv Detail & Related papers (2023-11-05T16:08:33Z) - Quantum Conformal Prediction for Reliable Uncertainty Quantification in
Quantum Machine Learning [47.991114317813555]
Quantum models implement implicit probabilistic predictors that produce multiple random decisions for each input through measurement shots.
This paper proposes to leverage such randomness to define prediction sets for both classification and regression that provably capture the uncertainty of the model.
arXiv Detail & Related papers (2023-04-06T22:05:21Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Advantages of quantum mechanics in the estimation theory [0.0]
In quantum theory, the situation with operators is different due to its non-commutativity nature.
We formulate, with complete generality, the quantum estimation theory for Gaussian states in terms of their first and second moments.
arXiv Detail & Related papers (2022-11-13T18:03:27Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Why we should interpret density matrices as moment matrices: the case of
(in)distinguishable particles and the emergence of classical reality [69.62715388742298]
We introduce a formulation of quantum theory (QT) as a general probabilistic theory but expressed via quasi-expectation operators (QEOs)
We will show that QT for both distinguishable and indistinguishable particles can be formulated in this way.
We will show that finitely exchangeable probabilities for a classical dice are as weird as QT.
arXiv Detail & Related papers (2022-03-08T14:47:39Z) - Quantum Causal Inference in the Presence of Hidden Common Causes: an
Entropic Approach [34.77250498401055]
We put forth a new theoretical framework for merging quantum information science and causal inference by exploiting entropic principles.
We apply our proposed framework to an experimentally relevant scenario of identifying message senders on quantum noisy links.
This approach can lay the foundations of identifying originators of malicious activity on future multi-node quantum networks.
arXiv Detail & Related papers (2021-04-24T22:45:50Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.