論文の概要: Complex accident, clear responsibility
- arxiv url: http://arxiv.org/abs/2306.12108v1
- Date: Wed, 21 Jun 2023 08:47:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-22 14:06:55.223482
- Title: Complex accident, clear responsibility
- Title(参考訳): 複雑な事故、明確な責任
- Authors: Dexin Yi
- Abstract要約: 本研究では,RCModel(Risk Chain Model)に基づく多目的責任配分最適化手法を提案する。
技術的観点から各俳優の責任を分析し、より合理的で公平な責任割り当てを促進する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The problem of allocating accident responsibility for autonomous driving is a
difficult issue in the field of autonomous driving. Due to the complexity of
autonomous driving technology, most of the research on the responsibility of
autonomous driving accidents has remained at the theoretical level. When
encountering actual autonomous driving accidents, a proven and fair solution is
needed. To address this problem, this study proposes a multi-subject
responsibility allocation optimization method based on the RCModel (Risk Chain
Model), which analyzes the responsibility of each actor from a technical
perspective and promotes a more reasonable and fair allocation of
responsibility.
- Abstract(参考訳): 自動運転に事故責任を割り当てる問題は、自動運転の分野では難しい問題である。
自律運転技術の複雑さのため、自動運転事故の責任に関する研究の大部分は理論レベルに留まっている。
実際の自動運転事故に遭遇する場合、実証され公正な解決策が必要となる。
この問題を解決するために,RCModel(Risk Chain Model)に基づく多目的責任配分最適化手法を提案し,技術的観点から各アクターの責任を分析し,より合理的かつ公平な責任配分を促進する。
関連論文リスト
- Causal Responsibility Attribution for Human-AI Collaboration [62.474732677086855]
本稿では,人間のAIシステムにおける責任を体系的に評価するために,構造因果モデル(SCM)を用いた因果的枠組みを提案する。
2つのケーススタディは、多様な人間とAIのコラボレーションシナリオにおけるフレームワークの適応性を示している。
論文 参考訳(メタデータ) (2024-11-05T17:17:45Z) - Exploring the Causality of End-to-End Autonomous Driving [57.631400236930375]
本稿では,エンドツーエンド自動運転の因果関係を探究し,分析するための包括的アプローチを提案する。
私たちの研究は、エンドツーエンドの自動運転の謎を初めて明らかにし、ブラックボックスを白い箱に変えた。
論文 参考訳(メタデータ) (2024-07-09T04:56:11Z) - Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
本稿では,現在のAVの状況を調べることによって,自律運転における本質的なリスクを評価する。
AVの利点と、現実のシナリオにおける潜在的なセキュリティ課題との微妙なバランスを強調した、特定のクレームを開発する。
論文 参考訳(メタデータ) (2024-05-14T09:42:21Z) - What's my role? Modelling responsibility for AI-based safety-critical
systems [1.0549609328807565]
開発者や製造業者は、AI-SCSの有害な振る舞いに責任を負うことは困難である。
人間のオペレータは、作成に責任を負わなかったAI-SCS出力の結果に責任を負う"信頼性シンク"になる可能性がある。
本稿では,異なる責任感(ロール,モラル,法的,因果関係)と,それらがAI-SCSの安全性の文脈でどのように適用されるかを検討する。
論文 参考訳(メタデータ) (2023-12-30T13:45:36Z) - LLM4Drive: A Survey of Large Language Models for Autonomous Driving [62.10344445241105]
大規模言語モデル(LLM)は、文脈理解、論理的推論、回答生成などの能力を示した。
本稿では,自動走行のための大規模言語モデル (LLM4AD) に関する研究ラインを体系的にレビューする。
論文 参考訳(メタデータ) (2023-11-02T07:23:33Z) - Explaining Autonomous Driving Actions with Visual Question Answering [3.0072636355661277]
本稿では,質問応答に基づく因果推論を用いた運転行動の説明を行う視覚質問応答(VQA)フレームワークを提案する。
実証的な結果は、VQAメカニズムが自動運転車のリアルタイム意思決定を支援することを示唆している。
論文 参考訳(メタデータ) (2023-07-19T18:37:57Z) - Studying the Impact of Semi-Cooperative Drivers on Overall Highway Flow [76.38515853201116]
半協調行動は、人間ドライバーの本質的な性質であり、自律運転には考慮すべきである。
新たな自律型プランナーは、社会的に準拠した軌道を生成するために、人間のドライバーの社会的価値指向(SVO)を考慮することができる。
エージェントが反復的最適応答のゲーム理論バージョンをデプロイする暗黙的な半協調運転について検討する。
論文 参考訳(メタデータ) (2023-04-23T16:01:36Z) - Parallelized and Randomized Adversarial Imitation Learning for
Safety-Critical Self-Driving Vehicles [11.463476667274051]
運転システムを安全に制御するために、信頼性の高いADAS機能調整を検討することが不可欠である。
本稿では,RAILアルゴリズムを提案する。
提案手法は, LIDARデータを扱う意思決定者を訓練し, 多車線複合高速道路環境における自律走行を制御できる。
論文 参考訳(メタデータ) (2021-12-26T23:42:49Z) - Multi-Agent Vulnerability Discovery for Autonomous Driving with Hazard
Arbitration Reward [21.627246586543542]
本研究では,マルチエージェント強化学習に基づくAv-Responsible Scenarios (STARS) の安全性テストフレームワークを提案する。
STARSは、他の交通機関の参加者にAv-Responsible Scenariosの制作を指導し、テスト中の運転ポリシーを誤解させる。
論文 参考訳(メタデータ) (2021-12-12T08:58:32Z) - A Software Architecture for Autonomous Vehicles: Team LRM-B Entry in the
First CARLA Autonomous Driving Challenge [49.976633450740145]
本稿では,シミュレーション都市環境における自律走行車両のナビゲーション設計について述べる。
我々のアーキテクチャは、CARLA Autonomous Driving Challengeの要件を満たすために作られました。
論文 参考訳(メタデータ) (2020-10-23T18:07:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。