Towards quantum enhanced adversarial robustness in machine learning
- URL: http://arxiv.org/abs/2306.12688v1
- Date: Thu, 22 Jun 2023 06:21:45 GMT
- Title: Towards quantum enhanced adversarial robustness in machine learning
- Authors: Maxwell T. West, Shu-Lok Tsang, Jia S. Low, Charles D. Hill,
Christopher Leckie, Lloyd C.L. Hollenberg, Sarah M. Erfani, Muhammad Usman
- Abstract summary: Integration of machine learning with quantum computing could yield better accuracy and computational efficiency.
Recent work has employed quantum mechanical phenomena to defend against adversarial attacks.
Despite promising early results, there remain challenges towards building robust real-world QAML tools.
- Score: 18.663564729815615
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning algorithms are powerful tools for data driven tasks such as
image classification and feature detection, however their vulnerability to
adversarial examples - input samples manipulated to fool the algorithm -
remains a serious challenge. The integration of machine learning with quantum
computing has the potential to yield tools offering not only better accuracy
and computational efficiency, but also superior robustness against adversarial
attacks. Indeed, recent work has employed quantum mechanical phenomena to
defend against adversarial attacks, spurring the rapid development of the field
of quantum adversarial machine learning (QAML) and potentially yielding a new
source of quantum advantage. Despite promising early results, there remain
challenges towards building robust real-world QAML tools. In this review we
discuss recent progress in QAML and identify key challenges. We also suggest
future research directions which could determine the route to practicality for
QAML approaches as quantum computing hardware scales up and noise levels are
reduced.
Related papers
- QML-IDS: Quantum Machine Learning Intrusion Detection System [1.2016264781280588]
We present QML-IDS, a novel Intrusion Detection System that combines quantum and classical computing techniques.
QML-IDS employs Quantum Machine Learning(QML) methodologies to analyze network patterns and detect attack activities.
We show that QML-IDS is effective at attack detection and performs well in binary and multiclass classification tasks.
arXiv Detail & Related papers (2024-10-07T13:07:41Z) - Exploring Quantum-Enhanced Machine Learning for Computer Vision: Applications and Insights on Noisy Intermediate-Scale Quantum Devices [0.0]
This study explores the intersection of quantum computing and Machine Learning (ML)
It evaluates the effectiveness of hybrid quantum-classical algorithms, such as the data re-uploading scheme and the patch Generative Adversarial Networks (GAN) model, on small-scale quantum devices.
arXiv Detail & Related papers (2024-04-01T20:55:03Z) - Benchmarking Quantum Generative Learning: A Study on Scalability and Noise Resilience using QUARK [0.3624329910445628]
This paper investigates the scalability and noise resilience of quantum generative learning applications.
We employ rigorous benchmarking techniques to track progress and identify challenges in scaling QML algorithms.
We show that QGANs are not as affected by the curse of dimensionality as QCBMs and to which extent QCBMs are resilient to noise.
arXiv Detail & Related papers (2024-03-27T15:05:55Z) - Drastic Circuit Depth Reductions with Preserved Adversarial Robustness
by Approximate Encoding for Quantum Machine Learning [0.5181797490530444]
We implement methods for the efficient preparation of quantum states representing encoded image data using variational, genetic and matrix product state based algorithms.
Results show that these methods can approximately prepare states to a level suitable for QML using circuits two orders of magnitude shallower than a standard state preparation implementation.
arXiv Detail & Related papers (2023-09-18T01:49:36Z) - Quafu-RL: The Cloud Quantum Computers based Quantum Reinforcement
Learning [0.0]
In this work, we take the first step towards executing benchmark quantum reinforcement problems on real devices equipped with at most 136 qubits on BAQIS Quafu quantum computing cloud.
The experimental results demonstrate that the Reinforcement Learning (RL) agents are capable of achieving goals that are slightly relaxed both during the training and inference stages.
arXiv Detail & Related papers (2023-05-29T09:13:50Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Potential and limitations of quantum extreme learning machines [55.41644538483948]
We present a framework to model QRCs and QELMs, showing that they can be concisely described via single effective measurements.
Our analysis paves the way to a more thorough understanding of the capabilities and limitations of both QELMs and QRCs.
arXiv Detail & Related papers (2022-10-03T09:32:28Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Quantum circuit architecture search on a superconducting processor [56.04169357427682]
Variational quantum algorithms (VQAs) have shown strong evidences to gain provable computational advantages for diverse fields such as finance, machine learning, and chemistry.
However, the ansatz exploited in modern VQAs is incapable of balancing the tradeoff between expressivity and trainability.
We demonstrate the first proof-of-principle experiment of applying an efficient automatic ansatz design technique to enhance VQAs on an 8-qubit superconducting quantum processor.
arXiv Detail & Related papers (2022-01-04T01:53:42Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.