Benchmarking Quantum Generative Learning: A Study on Scalability and Noise Resilience using QUARK
- URL: http://arxiv.org/abs/2403.18662v1
- Date: Wed, 27 Mar 2024 15:05:55 GMT
- Title: Benchmarking Quantum Generative Learning: A Study on Scalability and Noise Resilience using QUARK
- Authors: Florian J. Kiwit, Maximilian A. Wolf, Marwa Marso, Philipp Ross, Jeanette M. Lorenz, Carlos A. RiofrÃo, Andre Luckow,
- Abstract summary: This paper investigates the scalability and noise resilience of quantum generative learning applications.
We employ rigorous benchmarking techniques to track progress and identify challenges in scaling QML algorithms.
We show that QGANs are not as affected by the curse of dimensionality as QCBMs and to which extent QCBMs are resilient to noise.
- Score: 0.3624329910445628
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computing promises a disruptive impact on machine learning algorithms, taking advantage of the exponentially large Hilbert space available. However, it is not clear how to scale quantum machine learning (QML) to industrial-level applications. This paper investigates the scalability and noise resilience of quantum generative learning applications. We consider the training performance in the presence of statistical noise due to finite-shot noise statistics and quantum noise due to decoherence to analyze the scalability of QML methods. We employ rigorous benchmarking techniques to track progress and identify challenges in scaling QML algorithms, and show how characterization of QML systems can be accelerated, simplified, and made reproducible when the QUARK framework is used. We show that QGANs are not as affected by the curse of dimensionality as QCBMs and to which extent QCBMs are resilient to noise.
Related papers
- Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
We introduce an innovative approach that utilizes pre-trained neural networks to enhance Variational Quantum Circuits (VQC)
This technique effectively separates approximation error from qubit count and removes the need for restrictive conditions.
Our results extend to applications such as human genome analysis, demonstrating the broad applicability of our approach.
arXiv Detail & Related papers (2024-11-13T12:03:39Z) - NAC-QFL: Noise Aware Clustered Quantum Federated Learning [9.752814421987246]
This paper introduces a noise-aware clustered quantum federated learning system.
It addresses noise mitigation, limited quantum device capacity, and high quantum communication costs.
It enhances distributed QML performance and reduces communication costs.
arXiv Detail & Related papers (2024-06-20T12:00:17Z) - Identifying Bottlenecks of NISQ-friendly HHL algorithms [0.0]
We study noise resilience of NISQ-adaptation Iterative QPE and its HHL algorithm.
Results indicate that noise mitigation techniques, such as Qiskit readout and Mthree readout packages, are insufficient for enabling results recovery even in the small instances tested here.
arXiv Detail & Related papers (2024-06-10T14:11:27Z) - Unifying (Quantum) Statistical and Parametrized (Quantum) Algorithms [65.268245109828]
We take inspiration from Kearns' SQ oracle and Valiant's weak evaluation oracle.
We introduce an extensive yet intuitive framework that yields unconditional lower bounds for learning from evaluation queries.
arXiv Detail & Related papers (2023-10-26T18:23:21Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
A Quantum Kernel Self-Attention Mechanism (QKSAM) is introduced to combine the data representation merit of Quantum Kernel Methods (QKM) with the efficient information extraction capability of SAM.
A Quantum Kernel Self-Attention Network (QKSAN) framework is proposed based on QKSAM, which ingeniously incorporates the Deferred Measurement Principle (DMP) and conditional measurement techniques.
Four QKSAN sub-models are deployed on PennyLane and IBM Qiskit platforms to perform binary classification on MNIST and Fashion MNIST.
arXiv Detail & Related papers (2023-08-25T15:08:19Z) - Adaptive quantum error mitigation using pulse-based inverse evolutions [0.0]
We introduce a QEM method termed Adaptive KIK' that adapts to the noise level of the target device.
The implementation of the method is experimentally simple -- it does not involve any tomographic information or machine-learning stage.
We demonstrate our findings in the IBM quantum computers and through numerical simulations.
arXiv Detail & Related papers (2023-03-09T02:50:53Z) - Potential and limitations of quantum extreme learning machines [55.41644538483948]
We present a framework to model QRCs and QELMs, showing that they can be concisely described via single effective measurements.
Our analysis paves the way to a more thorough understanding of the capabilities and limitations of both QELMs and QRCs.
arXiv Detail & Related papers (2022-10-03T09:32:28Z) - Dynamical simulation via quantum machine learning with provable
generalization [2.061594137938085]
We develop a framework for using QML methods to simulate quantum dynamics on near-term quantum hardware.
We rigorously analyze the training data requirements of an algorithm within this framework.
Our numerics exhibit efficient scaling with problem size, and we simulate 20 times longer than Trotterization on IBMQ-Bogota.
arXiv Detail & Related papers (2022-04-21T17:15:24Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - On the learnability of quantum neural networks [132.1981461292324]
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
arXiv Detail & Related papers (2020-07-24T06:34:34Z) - Policy Gradient based Quantum Approximate Optimization Algorithm [2.5614220901453333]
We show that policy-gradient-based reinforcement learning algorithms are well suited for optimizing the variational parameters of QAOA in a noise-robust fashion.
We analyze the performance of the algorithm for quantum state transfer problems in single- and multi-qubit systems.
arXiv Detail & Related papers (2020-02-04T00:46:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.