Pure Exploration in Bandits with Linear Constraints
- URL: http://arxiv.org/abs/2306.12774v4
- Date: Thu, 25 Jan 2024 11:17:25 GMT
- Title: Pure Exploration in Bandits with Linear Constraints
- Authors: Emil Carlsson, Debabrota Basu, Fredrik D. Johansson, Devdatt Dubhashi
- Abstract summary: We address the problem of identifying the optimal policy with a fixed confidence level in a multi-armed bandit setup.
We introduce twoally optimal algorithms for this setting, one based on the Track-and-Stop method and the other based on a game-theoretic approach.
We provide empirical results that validate our bounds and visualize how constraints change the hardness of the problem.
- Score: 15.547603114649464
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We address the problem of identifying the optimal policy with a fixed
confidence level in a multi-armed bandit setup, when \emph{the arms are subject
to linear constraints}. Unlike the standard best-arm identification problem
which is well studied, the optimal policy in this case may not be deterministic
and could mix between several arms. This changes the geometry of the problem
which we characterize via an information-theoretic lower bound. We introduce
two asymptotically optimal algorithms for this setting, one based on the
Track-and-Stop method and the other based on a game-theoretic approach. Both
these algorithms try to track an optimal allocation based on the lower bound
and computed by a weighted projection onto the boundary of a normal cone.
Finally, we provide empirical results that validate our bounds and visualize
how constraints change the hardness of the problem.
Related papers
- Learning to Explore with Lagrangians for Bandits under Unknown Linear Constraints [8.784438985280094]
We study problems as pure exploration in multi-armed bandits with unknown linear constraints.
First, we propose a Lagrangian relaxation of the sample complexity lower bound for pure exploration under constraints.
Second, we leverage the Lagrangian lower bound and the properties of convex to propose two computationally efficient extensions of Track-and-Stop and Gamified Explorer, namely LATS and LAGEX.
arXiv Detail & Related papers (2024-10-24T15:26:14Z) - Trust-Region Sequential Quadratic Programming for Stochastic Optimization with Random Models [57.52124921268249]
We propose a Trust Sequential Quadratic Programming method to find both first and second-order stationary points.
To converge to first-order stationary points, our method computes a gradient step in each iteration defined by minimizing a approximation of the objective subject.
To converge to second-order stationary points, our method additionally computes an eigen step to explore the negative curvature the reduced Hessian matrix.
arXiv Detail & Related papers (2024-09-24T04:39:47Z) - Beyond Primal-Dual Methods in Bandits with Stochastic and Adversarial Constraints [29.514323697659613]
We address a generalization of the bandit with knapsacks problem, where a learner aims to maximize rewards while satisfying an arbitrary set of long-term constraints.
Our goal is to design best-of-both-worlds algorithms that perform under both and adversarial constraints.
arXiv Detail & Related papers (2024-05-25T08:09:36Z) - Best Arm Identification with Fixed Budget: A Large Deviation Perspective [54.305323903582845]
We present sred, a truly adaptive algorithm that can reject arms in it any round based on the observed empirical gaps between the rewards of various arms.
In particular, we present sred, a truly adaptive algorithm that can reject arms in it any round based on the observed empirical gaps between the rewards of various arms.
arXiv Detail & Related papers (2023-12-19T13:17:43Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - An Asymptotically Optimal Primal-Dual Incremental Algorithm for
Contextual Linear Bandits [129.1029690825929]
We introduce a novel algorithm improving over the state-of-the-art along multiple dimensions.
We establish minimax optimality for any learning horizon in the special case of non-contextual linear bandits.
arXiv Detail & Related papers (2020-10-23T09:12:47Z) - Optimal Best-arm Identification in Linear Bandits [79.3239137440876]
We devise a simple algorithm whose sampling complexity matches known instance-specific lower bounds.
Unlike existing best-arm identification strategies, our algorithm uses a stopping rule that does not depend on the number of arms.
arXiv Detail & Related papers (2020-06-29T14:25:51Z) - Best Arm Identification in Spectral Bandits [0.0]
Best Arm Identification (BAI) is an important challenge in many applications ranging from parameter tuning to clinical trials.
We study best-arm identification with fixed confidence in bandit models with graph smoothness constraint.
arXiv Detail & Related papers (2020-05-20T04:12:04Z) - The Simulator: Understanding Adaptive Sampling in the
Moderate-Confidence Regime [52.38455827779212]
We propose a novel technique for analyzing adaptive sampling called the em Simulator.
We prove the first instance-based lower bounds the top-k problem which incorporate the appropriate log-factors.
Our new analysis inspires a simple and near-optimal for the best-arm and top-k identification, the first em practical of its kind for the latter problem.
arXiv Detail & Related papers (2017-02-16T23:42:02Z) - Bandit algorithms to emulate human decision making using probabilistic
distortions [20.422725678982726]
We formulate two sample multi-armed bandit problems with distorted probabilities on the reward distributions.
We consider the aforementioned problems in the regret minimization as well as best arm identification framework for multi-armed bandits.
arXiv Detail & Related papers (2016-11-30T17:37:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.