Anticipatory Thinking Challenges in Open Worlds: Risk Management
- URL: http://arxiv.org/abs/2306.13157v1
- Date: Thu, 22 Jun 2023 18:31:17 GMT
- Title: Anticipatory Thinking Challenges in Open Worlds: Risk Management
- Authors: Adam Amos-Binks, Dustin Dannenhauer, Leilani H. Gilpin
- Abstract summary: As AI systems become part of everyday life, they too have begun to manage risk.
Learning to identify and mitigate low-frequency, high-impact risks is at odds with the observational bias required to train machine learning models.
Our goal is to spur research into solutions that assess and improve the anticipatory thinking required by AI agents to manage risk in open-worlds and ultimately the real-world.
- Score: 7.820667552233988
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anticipatory thinking drives our ability to manage risk - identification and
mitigation - in everyday life, from bringing an umbrella when it might rain to
buying car insurance. As AI systems become part of everyday life, they too have
begun to manage risk. Autonomous vehicles log millions of miles, StarCraft and
Go agents have similar capabilities to humans, implicitly managing risks
presented by their opponents. To further increase performance in these tasks,
out-of-distribution evaluation can characterize a model's bias, what we view as
a type of risk management. However, learning to identify and mitigate
low-frequency, high-impact risks is at odds with the observational bias
required to train machine learning models. StarCraft and Go are closed-world
domains whose risks are known and mitigations well documented, ideal for
learning through repetition. Adversarial filtering datasets provide difficult
examples but are laborious to curate and static, both barriers to real-world
risk management. Adversarial robustness focuses on model poisoning under the
assumption there is an adversary with malicious intent, without considering
naturally occurring adversarial examples. These methods are all important steps
towards improving risk management but do so without considering open-worlds. We
unify these open-world risk management challenges with two contributions. The
first is our perception challenges, designed for agents with imperfect
perceptions of their environment whose consequences have a high impact. Our
second contribution are cognition challenges, designed for agents that must
dynamically adjust their risk exposure as they identify new risks and learn new
mitigations. Our goal with these challenges is to spur research into solutions
that assess and improve the anticipatory thinking required by AI agents to
manage risk in open-worlds and ultimately the real-world.
Related papers
- Risk Alignment in Agentic AI Systems [0.0]
Agentic AIs capable of undertaking complex actions with little supervision raise new questions about how to safely create and align such systems with users, developers, and society.
Risk alignment will matter for user satisfaction and trust, but it will also have important ramifications for society more broadly.
We present three papers that bear on key normative and technical aspects of these questions.
arXiv Detail & Related papers (2024-10-02T18:21:08Z) - EAIRiskBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [47.69642609574771]
Embodied artificial intelligence (EAI) integrates advanced AI models into physical entities for real-world interaction.
Foundation models as the "brain" of EAI agents for high-level task planning have shown promising results.
However, the deployment of these agents in physical environments presents significant safety challenges.
This study introduces EAIRiskBench, a novel framework for automated physical risk assessment in EAI scenarios.
arXiv Detail & Related papers (2024-08-08T13:19:37Z) - AI and the Iterable Epistopics of Risk [1.26404863283601]
The risks AI presents to society are broadly understood to be manageable through general calculus.
This paper elaborates how risk is apprehended and managed by a regulator, developer and cyber-security expert.
arXiv Detail & Related papers (2024-04-29T13:33:22Z) - The Reasoning Under Uncertainty Trap: A Structural AI Risk [0.0]
Report provides an exposition of what makes RUU so challenging for both humans and machines.
We detail how this misuse risk connects to a wider network of underlying structural risks.
arXiv Detail & Related papers (2024-01-29T17:16:57Z) - Control Risk for Potential Misuse of Artificial Intelligence in Science [85.91232985405554]
We aim to raise awareness of the dangers of AI misuse in science.
We highlight real-world examples of misuse in chemical science.
We propose a system called SciGuard to control misuse risks for AI models in science.
arXiv Detail & Related papers (2023-12-11T18:50:57Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
We describe risks that include large-scale social harms, malicious uses, and irreversible loss of human control over autonomous AI systems.
There is a lack of consensus about how exactly such risks arise, and how to manage them.
Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness, and barely address autonomous systems.
arXiv Detail & Related papers (2023-10-26T17:59:06Z) - An Overview of Catastrophic AI Risks [38.84933208563934]
This paper provides an overview of the main sources of catastrophic AI risks, which we organize into four categories.
Malicious use, in which individuals or groups intentionally use AIs to cause harm; AI race, in which competitive environments compel actors to deploy unsafe AIs or cede control to AIs.
organizational risks, highlighting how human factors and complex systems can increase the chances of catastrophic accidents.
rogue AIs, describing the inherent difficulty in controlling agents far more intelligent than humans.
arXiv Detail & Related papers (2023-06-21T03:35:06Z) - Efficient Risk-Averse Reinforcement Learning [79.61412643761034]
In risk-averse reinforcement learning (RL), the goal is to optimize some risk measure of the returns.
We prove that under certain conditions this inevitably leads to a local-optimum barrier, and propose a soft risk mechanism to bypass it.
We demonstrate improved risk aversion in maze navigation, autonomous driving, and resource allocation benchmarks.
arXiv Detail & Related papers (2022-05-10T19:40:52Z) - Learning Collective Action under Risk Diversity [68.88688248278102]
We investigate the consequences of risk diversity in groups of agents learning to play collective risk dilemmas.
We show that risk diversity significantly reduces overall cooperation and hinders collective target achievement.
Our results highlight the need for aligning risk perceptions among agents or develop new learning techniques.
arXiv Detail & Related papers (2022-01-30T18:21:21Z) - Explore and Control with Adversarial Surprise [78.41972292110967]
Reinforcement learning (RL) provides a framework for learning goal-directed policies given user-specified rewards.
We propose a new unsupervised RL technique based on an adversarial game which pits two policies against each other to compete over the amount of surprise an RL agent experiences.
We show that our method leads to the emergence of complex skills by exhibiting clear phase transitions.
arXiv Detail & Related papers (2021-07-12T17:58:40Z) - Towards Risk Modeling for Collaborative AI [5.941104748966331]
Collaborative AI systems aim at working together with humans in a shared space to achieve a common goal.
This setting imposes potentially hazardous circumstances due to contacts that could harm human beings.
We introduce a risk modeling approach tailored to Collaborative AI systems.
arXiv Detail & Related papers (2021-03-12T18:53:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.