論文の概要: DiffInfinite: Large Mask-Image Synthesis via Parallel Random Patch
Diffusion in Histopathology
- arxiv url: http://arxiv.org/abs/2306.13384v2
- Date: Wed, 25 Oct 2023 11:58:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-26 20:23:17.847444
- Title: DiffInfinite: Large Mask-Image Synthesis via Parallel Random Patch
Diffusion in Histopathology
- Title(参考訳): DiffInfinite: Parallel Random Patch Diffusionによる大きなマスク画像合成
- Authors: Marco Aversa, Gabriel Nobis, Miriam H\"agele, Kai Standvoss, Mihaela
Chirica, Roderick Murray-Smith, Ahmed Alaa, Lukas Ruff, Daniela Ivanova,
Wojciech Samek, Frederick Klauschen, Bruno Sanguinetti, Luis Oala
- Abstract要約: 任意の大きさの組織像を生成する階層拡散モデルDiffInfiniteを提案する。
提案手法は,任意の画像サイズにスケールアップできるが,高速トレーニングには小さなパッチのみが必要である。
- 参考スコア(独自算出の注目度): 10.412322654017313
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present DiffInfinite, a hierarchical diffusion model that generates
arbitrarily large histological images while preserving long-range correlation
structural information. Our approach first generates synthetic segmentation
masks, subsequently used as conditions for the high-fidelity generative
diffusion process. The proposed sampling method can be scaled up to any desired
image size while only requiring small patches for fast training. Moreover, it
can be parallelized more efficiently than previous large-content generation
methods while avoiding tiling artifacts. The training leverages classifier-free
guidance to augment a small, sparsely annotated dataset with unlabelled data.
Our method alleviates unique challenges in histopathological imaging practice:
large-scale information, costly manual annotation, and protective data
handling. The biological plausibility of DiffInfinite data is evaluated in a
survey by ten experienced pathologists as well as a downstream classification
and segmentation task. Samples from the model score strongly on anti-copying
metrics which is relevant for the protection of patient data.
- Abstract(参考訳): 長距離相関構造情報を保存しながら任意に大きな組織像を生成する階層拡散モデルdiffinfiniteを提案する。
提案手法は,まず合成セグメンテーションマスクを生成し,その後高忠実度生成拡散過程の条件として用いる。
提案手法は,任意の画像サイズにスケールアップできるが,高速トレーニングには小さなパッチのみが必要である。
さらに、ティリングアーティファクトを避けつつ、以前の大規模なコンテンツ生成メソッドよりも効率的に並列化することができる。
このトレーニングでは、分類器なしのガイダンスを活用して、小さな、わずかに注釈付けされたデータセットを、ラベルのないデータで拡張する。
本手法は, 大規模情報, 高価な手動アノテーション, 保護データ処理など, 病理画像学の実践における固有の課題を軽減する。
DiffInfinite データの生物学的妥当性は,10人の経験者,下流分類・分節課題によって評価された。
モデルから得られたサンプルは、患者データの保護に関連するアンチコピー指標に強く依存する。
関連論文リスト
- SatSynth: Augmenting Image-Mask Pairs through Diffusion Models for Aerial Semantic Segmentation [69.42764583465508]
我々は,地球観測における注釈付きデータの不足に対処するために,生成的画像拡散の可能性を探る。
我々の知る限りでは、衛星セグメンテーションのための画像と対応するマスクの両方を最初に生成する。
論文 参考訳(メタデータ) (2024-03-25T10:30:22Z) - Diffusion-based Data Augmentation for Nuclei Image Segmentation [68.28350341833526]
核セグメンテーションのための拡散法を初めて導入する。
このアイデアは、多数のラベル付き画像を合成し、セグメンテーションモデルを訓練することを目的としている。
実験の結果,10%のラベル付き実データセットを合成サンプルで拡張することにより,同等のセグメンテーション結果が得られることがわかった。
論文 参考訳(メタデータ) (2023-10-22T06:16:16Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
弱点アノテーションを用いたドメイン適応型シナプス検出のためのフレームワークであるAdaSynを提案する。
I SBI 2023のWASPSYNチャレンジでは、我々の手法が第1位にランクインした。
論文 参考訳(メタデータ) (2023-08-31T05:05:53Z) - Synthetic Augmentation with Large-scale Unconditional Pre-training [4.162192894410251]
アノテーション付きデータへの依存性を低減するため,HistoDiffusionという合成拡張手法を提案する。
HistoDiffusionは、大規模にラベル付けされていないデータセットで事前トレーニングし、その後、拡張トレーニングのために小さなラベル付きデータセットに適用することができる。
本手法は,3つの病理組織学的データセットを事前学習し,大腸癌の病理組織学的データセット(CRC)を事前学習データセットから除外して評価する。
論文 参考訳(メタデータ) (2023-08-08T03:34:04Z) - Domain Adaptive Multiple Instance Learning for Instance-level Prediction
of Pathological Images [45.132775668689604]
アノテーションのコストを増大させることなく、ターゲットデータセットの分類性能を向上させるためのタスク設定を提案する。
両手法の監督情報を効果的に組み合わせるために,信頼性の高い擬似ラベルを作成する手法を提案する。
論文 参考訳(メタデータ) (2023-04-07T08:31:06Z) - CellMix: A General Instance Relationship based Method for Data
Augmentation Towards Pathology Image Classification [6.9596321268519326]
病理画像解析では、高品質な注釈付きサンプルの取得と維持は非常に労働集約的な作業である。
本稿では,新しい分散指向型インプレースシャッフル手法であるCellMixフレームワークを提案する。
病理画像分類タスクにおける実験は、7つの異なるデータセット上でのSOTA(State-of-the-art)性能を示す。
論文 参考訳(メタデータ) (2023-01-27T03:17:35Z) - Learning from Partially Overlapping Labels: Image Segmentation under
Annotation Shift [68.6874404805223]
腹部臓器分節の文脈におけるラベルの重複から学ぶためのいくつかの方法を提案する。
半教師付きアプローチと適応的クロスエントロピー損失を組み合わせることで、不均一な注釈付きデータをうまく活用できることが判明した。
論文 参考訳(メタデータ) (2021-07-13T09:22:24Z) - METGAN: Generative Tumour Inpainting and Modality Synthesis in Light
Sheet Microscopy [4.872960046536882]
本稿では,実解剖情報を活用し,腫瘍の現実的な画像ラベル対を生成する新しい生成法を提案する。
解剖学的画像とラベルのためのデュアルパス生成器を構築し, 独立して事前学習されたセグメンタによって制約された, サイクル一貫性のある設定で学習する。
生成した画像は,既存の手法に比べて定量的に顕著に改善された。
論文 参考訳(メタデータ) (2021-04-22T11:18:17Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
本稿では, ラベル付きデータとラベルなしデータの両方を, 知識蒸留による精度向上に活用することを提案する。
摂動に敏感なサンプルマイニングを用いたマスク誘導型平均教師フレームワークを提案する。
実験の結果,ラベル付きデータのみから学習した教師付き手法と比較して,提案手法は性能を著しく向上することがわかった。
論文 参考訳(メタデータ) (2020-07-21T13:27:09Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z) - A generic ensemble based deep convolutional neural network for
semi-supervised medical image segmentation [7.141405427125369]
深層畳み込みニューラルネットワーク(DCNN)に基づく画像セグメンテーションのための汎用的な半教師付き学習フレームワークを提案する。
本手法は,ラベルなしデータを組み込むことで,完全教師付きモデル学習を超えて大幅に改善することができる。
論文 参考訳(メタデータ) (2020-04-16T23:41:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。