論文の概要: A generic ensemble based deep convolutional neural network for
semi-supervised medical image segmentation
- arxiv url: http://arxiv.org/abs/2004.07995v1
- Date: Thu, 16 Apr 2020 23:41:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-12 21:54:50.118826
- Title: A generic ensemble based deep convolutional neural network for
semi-supervised medical image segmentation
- Title(参考訳): 半教師型医用画像分割のための汎用アンサンブルに基づく深部畳み込みニューラルネットワーク
- Authors: Ruizhe Li, Dorothee Auer, Christian Wagner, Xin Chen
- Abstract要約: 深層畳み込みニューラルネットワーク(DCNN)に基づく画像セグメンテーションのための汎用的な半教師付き学習フレームワークを提案する。
本手法は,ラベルなしデータを組み込むことで,完全教師付きモデル学習を超えて大幅に改善することができる。
- 参考スコア(独自算出の注目度): 7.141405427125369
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning based image segmentation has achieved the state-of-the-art
performance in many medical applications such as lesion quantification, organ
detection, etc. However, most of the methods rely on supervised learning, which
require a large set of high-quality labeled data. Data annotation is generally
an extremely time-consuming process. To address this problem, we propose a
generic semi-supervised learning framework for image segmentation based on a
deep convolutional neural network (DCNN). An encoder-decoder based DCNN is
initially trained using a few annotated training samples. This initially
trained model is then copied into sub-models and improved iteratively using
random subsets of unlabeled data with pseudo labels generated from models
trained in the previous iteration. The number of sub-models is gradually
decreased to one in the final iteration. We evaluate the proposed method on a
public grand-challenge dataset for skin lesion segmentation. Our method is able
to significantly improve beyond fully supervised model learning by
incorporating unlabeled data.
- Abstract(参考訳): 深層学習に基づくイメージセグメンテーションは、病変の定量化や臓器検出など、多くの医学応用において最先端のパフォーマンスを達成した。
しかし、ほとんどの手法は教師あり学習に依存しており、大量の高品質なラベル付きデータを必要とする。
データアノテーションは一般的に非常に時間を要するプロセスです。
そこで本研究では,深層畳み込みニューラルネットワーク(dcnn)に基づく画像分割のための半教師付き学習フレームワークを提案する。
エンコーダ-デコーダベースのDCNNは、最初は注釈付きトレーニングサンプルを使用してトレーニングされる。
この初期トレーニングされたモデルはサブモデルにコピーされ、前回のイテレーションでトレーニングされたモデルから生成された擬似ラベルを含むラベルなしデータのランダムサブセットを使用して反復的に改善される。
サブモデルの数は、最終イテレーションで徐々に1つに減らされる。
皮膚病変分類のためのパブリックグランドシャレンジデータセットを用いて提案手法の評価を行った。
本手法はラベルなしデータを用いることで,教師なしモデル学習よりも大幅に改善することができる。
関連論文リスト
- Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
弱点アノテーションを用いたドメイン適応型シナプス検出のためのフレームワークであるAdaSynを提案する。
I SBI 2023のWASPSYNチャレンジでは、我々の手法が第1位にランクインした。
論文 参考訳(メタデータ) (2023-08-31T05:05:53Z) - Unsupervised Segmentation of Fetal Brain MRI using Deep Learning
Cascaded Registration [2.494736313545503]
従来の深層学習に基づく自動セグメンテーションは、グランドトラストラベルによる広範なトレーニングデータを必要とする。
ラベル付きデータに頼らずに複数の組織を正確にセグメンテーションするマルチアトラスセグメンテーションに基づく新しい手法を提案する。
提案手法では,3次元画像登録のためのカスケード深層学習ネットワークを用いて,移動画像への小さなインクリメンタルな変形を計算し,それを固定画像と正確に整合させる。
論文 参考訳(メタデータ) (2023-07-07T13:17:12Z) - Adaptive Convolutional Dictionary Network for CT Metal Artifact
Reduction [62.691996239590125]
本稿では,金属人工物削減のための適応畳み込み辞書ネットワーク(ACDNet)を提案する。
我々のACDNetは、トレーニングデータを介して、アーティファクトフリーCT画像の事前を自動で学習し、入力されたCT画像ごとに表現カーネルを適応的に調整することができる。
本手法は,モデルに基づく手法の明確な解釈可能性を継承し,学習に基づく手法の強力な表現能力を維持する。
論文 参考訳(メタデータ) (2022-05-16T06:49:36Z) - CvS: Classification via Segmentation For Small Datasets [52.821178654631254]
本稿では,分類ラベルをセグメントマップの予測から導出する小型データセットのコスト効率の高い分類器であるCvSを提案する。
我々は,CvSが従来の手法よりもはるかに高い分類結果が得られることを示す多種多様な問題に対して,本フレームワークの有効性を評価する。
論文 参考訳(メタデータ) (2021-10-29T18:41:15Z) - A Light-weight Interpretable CompositionalNetwork for Nuclei Detection
and Weakly-supervised Segmentation [10.196621315018884]
ディープニューラルネットワークは通常、膨大なパラメータをトレーニングするために大量の注釈付きデータを必要とする。
我々は,特に孤立した核に部分的なアノテーションを必要とするデータ効率モデルを構築することを提案する。
論文 参考訳(メタデータ) (2021-10-26T16:44:08Z) - Uncertainty guided semi-supervised segmentation of retinal layers in OCT
images [4.046207281399144]
セグメンテーションネットワークを訓練する学生・教師のアプローチに基づく,新しい不確実性誘導半教師学習を提案する。
提案するフレームワークは,様々な画像モダリティにまたがるバイオメディカルイメージセグメンテーションに有効である。
論文 参考訳(メタデータ) (2021-03-02T23:14:25Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
データ不足下における部分教師付き学習(PSL)における方法論的ギャップを埋めるために,不確実性下でのビシナルラベル(VLUU)を提案する。
マルチタスク学習とヴィジナルリスク最小化によって動機づけられたVLUUは、ビジナルラベルを生成することによって、部分的に教師付き問題を完全な教師付き問題に変換する。
本研究は,ラベル効率の高い深層学習における新たな研究の方向性を示唆するものである。
論文 参考訳(メタデータ) (2020-11-28T16:31:00Z) - Weakly Supervised Deep Nuclei Segmentation Using Partial Points
Annotation in Histopathology Images [51.893494939675314]
本稿では,部分点アノテーションに基づく弱教師付きセグメンテーションフレームワークを提案する。
本手法は, 完全教師付き手法や最先端手法と比較して, 競争性能を向上できることを示す。
論文 参考訳(メタデータ) (2020-07-10T15:41:29Z) - Progressive Adversarial Semantic Segmentation [11.323677925193438]
深い畳み込みニューラルネットワークは、完全な監視が与えられた場合、非常によく機能する。
画像解析タスクのための完全教師付きモデルの成功は、大量のラベル付きデータの入手に限られる。
本稿では,新しい医用画像分割モデル,Progressive Adrial Semantic(PASS)を提案する。
論文 参考訳(メタデータ) (2020-05-08T22:48:00Z) - 3D medical image segmentation with labeled and unlabeled data using
autoencoders at the example of liver segmentation in CT images [58.720142291102135]
本研究では、畳み込みニューラルネットワークによるセグメンテーションを改善するために、オートエンコーダ抽出機能の可能性を検討する。
コンボリューション・オートエンコーダを用いてラベルのないデータから特徴を抽出し,CT画像における3次元肝セグメンテーションの目標タスクを実行するために,マルチスケールの完全畳み込みCNNを用いた。
論文 参考訳(メタデータ) (2020-03-17T20:20:43Z) - Weak Supervision in Convolutional Neural Network for Semantic
Segmentation of Diffuse Lung Diseases Using Partially Annotated Dataset [2.239917051803692]
5種類の肺疾患に対するセマンティックセグメンテーションモデルを構築した。
この研究で考慮されたDLDは、凝縮、ガラス不透明度、ハニカム、気腫、正常である。
部分的に注釈付けされたデータセットを効果的に活用する新しい弱い監視手法を提案する。
論文 参考訳(メタデータ) (2020-02-27T06:17:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。