論文の概要: Decoupled Diffusion Models with Explicit Transition Probability
- arxiv url: http://arxiv.org/abs/2306.13720v4
- Date: Thu, 10 Aug 2023 11:54:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-11 15:36:48.703266
- Title: Decoupled Diffusion Models with Explicit Transition Probability
- Title(参考訳): 明示的な遷移確率を持つ分離拡散モデル
- Authors: Yuhang Huang and Zheng Qin and Xinwang Liu and Kai Xu
- Abstract要約: 本稿では, 複雑な拡散過程を2つの比較的単純なプロセスに分離し, 生成効率と速度を改善することを提案する。
拡散過程の疎結合は学習の難しさを低減し、明示的な遷移確率は生成速度を大幅に向上させる。
また,このフレームワークは画像条件付き生成や高解像度画像合成にも適用可能であること,また,10機能評価のみで高品質な画像を生成することができることを示す。
- 参考スコア(独自算出の注目度): 55.50635867170273
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent diffusion probabilistic models (DPMs) have shown remarkable abilities
of generated content, however, they often suffer from complex forward
processes, resulting in inefficient solutions for the reversed process and
prolonged sampling times. In this paper, we aim to address the aforementioned
challenges by focusing on the diffusion process itself that we propose to
decouple the intricate diffusion process into two comparatively simpler process
to improve the generative efficacy and speed. In particular, we present a novel
diffusion paradigm named DDM (Decoupled Diffusion Models) based on the Ito
diffusion process, in which the image distribution is approximated by an
explicit transition probability while the noise path is controlled by the
standard Wiener process. We find that decoupling the diffusion process reduces
the learning difficulty and the explicit transition probability improves the
generative speed significantly. We prove a new training objective for DPM,
which enables the model to learn to predict the noise and image components
separately. Moreover, given the novel forward diffusion equation, we derive the
reverse denoising formula of DDM that naturally supports fewer steps of
generation without ordinary differential equation (ODE) based accelerators. Our
experiments demonstrate that DDM outperforms previous DPMs by a large margin in
fewer function evaluations setting and gets comparable performances in long
function evaluations setting. We also show that our framework can be applied to
image-conditioned generation and high-resolution image synthesis, and that it
can generate high-quality images with only 10 function evaluations.
- Abstract(参考訳): 近年の拡散確率モデル (DPM) は, 生成物の顕著な性能を示すが, 複雑な前処理に悩まされることが多く, 逆処理やサンプリング時間の短縮が困難である。
本稿では, 複雑な拡散過程を2つの比較的単純なプロセスに分離し, 生成効率と速度を改善することを提案する拡散過程自体に着目し, 上記の課題に対処することを目的とする。
特に, ito拡散過程に基づくddm (decoupled diffusion models) と呼ばれる新しい拡散パラダイムを提案し, 雑音経路を標準ワイナー過程で制御しながら, 画像分布を明示的な遷移確率で近似する。
拡散過程の疎結合は学習の難しさを低減し、明示的な遷移確率は生成速度を大幅に向上させる。
我々はDPMの新しい学習目標を証明し、モデルが別々にノイズや画像成分を予測することを学べるようにした。
さらに、新しい前方拡散方程式を考えると、通常の微分方程式(ODE)ベースの加速器を使わずに、自然に生成のステップを少なくするDDMの逆分解式を導出する。
実験により,ddmは従来のdpmよりも少ない機能評価設定で大きな差を示し,長機能評価設定で同等の性能を得た。
また,このフレームワークは画像条件付き生成や高解像度画像合成にも適用可能であること,また,10機能評価のみで高品質な画像を生成することができることを示す。
関連論文リスト
- Fast constrained sampling in pre-trained diffusion models [77.21486516041391]
拡散モデルは、大規模な生成画像モデルの分野を支配してきた。
本研究では,大規模な事前学習拡散モデルにおける高速拘束サンプリングのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-24T14:52:38Z) - Identifying and Solving Conditional Image Leakage in Image-to-Video Diffusion Model [31.70050311326183]
拡散モデルは、予想より少ない動きでビデオを生成する傾向がある。
推論とトレーニングの両方の観点からこの問題に対処します。
提案手法は,より低い誤差で高い動作スコアを生成することにより,ベースラインを上回ります。
論文 参考訳(メタデータ) (2024-06-22T04:56:16Z) - Improved Distribution Matching Distillation for Fast Image Synthesis [54.72356560597428]
この制限を解除し、MDDトレーニングを改善する一連の技術であるMDD2を紹介する。
まず、回帰損失と高価なデータセット構築の必要性を排除します。
第2に, GAN損失を蒸留工程に統合し, 生成した試料と実画像との識別を行う。
論文 参考訳(メタデータ) (2024-05-23T17:59:49Z) - Provably Robust Score-Based Diffusion Posterior Sampling for Plug-and-Play Image Reconstruction [31.503662384666274]
科学と工学において、ゴールは、ある画像のモダリティを記述する既知のフォワードモデルから収集された少数の測定値から未知の画像を推測することである。
モチベートされたスコアベース拡散モデルはその経験的成功により、画像再構成に先立って模範の印象的な候補として現れた。
論文 参考訳(メタデータ) (2024-03-25T15:58:26Z) - Generalized Consistency Trajectory Models for Image Manipulation [59.576781858809355]
拡散モデル(DM)は、画像編集や復元などの応用と同様に、無条件生成において優れている。
本研究の目的は、一般化されたCTM(GCTM)を提案することによって、整合性軌道モデル(CTM)の完全なポテンシャルを解放することである。
本稿では,GCTMの設計空間について論じ,画像から画像への変換,復元,編集など,様々な画像操作タスクにおいて有効性を示す。
論文 参考訳(メタデータ) (2024-03-19T07:24:54Z) - DDFM: Denoising Diffusion Model for Multi-Modality Image Fusion [144.9653045465908]
拡散確率モデル(DDPM)に基づく新しい融合アルゴリズムを提案する。
近赤外可視画像融合と医用画像融合で有望な融合が得られた。
論文 参考訳(メタデータ) (2023-03-13T04:06:42Z) - AI pipeline for accurate retinal layer segmentation using OCT 3D images [3.938455123895825]
いくつかの古典的およびAIベースのアルゴリズムが組み合わせてテストされ、動物イメージングシステムからのデータとの互換性を確認している。
単純で実装可能な解析方程式は、平均ピクセル値の1%インクリメントで輝度操作に有効であることが示されている。
厚み推定処理は、手動の注釈付き標準データと比較して6%の誤差を有する。
論文 参考訳(メタデータ) (2023-02-15T17:46:32Z) - Person Image Synthesis via Denoising Diffusion Model [116.34633988927429]
本研究では,高忠実度人物画像合成に拡散モデルをいかに応用できるかを示す。
2つの大規模ベンチマークとユーザスタディの結果は、挑戦的なシナリオ下で提案したアプローチのフォトリアリズムを実証している。
論文 参考訳(メタデータ) (2022-11-22T18:59:50Z) - Score-based diffusion models for accelerated MRI [35.3148116010546]
本研究では,画像中の逆問題を容易に解けるような条件分布からデータをサンプリングする方法を提案する。
我々のモデルは、訓練のためにのみ等級画像を必要とするが、複雑な値のデータを再構成することができ、さらに並列画像まで拡張できる。
論文 参考訳(メタデータ) (2021-10-08T08:42:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。