AME-CAM: Attentive Multiple-Exit CAM for Weakly Supervised Segmentation
on MRI Brain Tumor
- URL: http://arxiv.org/abs/2306.14505v2
- Date: Fri, 1 Dec 2023 14:29:01 GMT
- Title: AME-CAM: Attentive Multiple-Exit CAM for Weakly Supervised Segmentation
on MRI Brain Tumor
- Authors: Yu-Jen Chen, Xinrong Hu, Yiyu Shi, Tsung-Yi Ho
- Abstract summary: We propose a novel CAM method, Attentive Multiple-Exit CAM (AME-CAM), that extracts activation maps from multiple resolutions to hierarchically aggregate and improve prediction accuracy.
We evaluate our method on the BraTS 2021 dataset and show that it outperforms state-of-the-art methods.
- Score: 20.70840352243769
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magnetic resonance imaging (MRI) is commonly used for brain tumor
segmentation, which is critical for patient evaluation and treatment planning.
To reduce the labor and expertise required for labeling, weakly-supervised
semantic segmentation (WSSS) methods with class activation mapping (CAM) have
been proposed. However, existing CAM methods suffer from low resolution due to
strided convolution and pooling layers, resulting in inaccurate predictions. In
this study, we propose a novel CAM method, Attentive Multiple-Exit CAM
(AME-CAM), that extracts activation maps from multiple resolutions to
hierarchically aggregate and improve prediction accuracy. We evaluate our
method on the BraTS 2021 dataset and show that it outperforms state-of-the-art
methods.
Related papers
- CT-based brain ventricle segmentation via diffusion Schrödinger Bridge without target domain ground truths [0.9720086191214947]
Efficient and accurate brain ventricle segmentation from clinical CT scans is critical for emergency surgeries like ventriculostomy.
We introduce a novel uncertainty-aware ventricle segmentation technique without the need of CT segmentation ground truths.
Our method employs the diffusion Schr"odinger Bridge and an attention recurrent residual U-Net to capitalize on unpaired CT and MRI scans.
arXiv Detail & Related papers (2024-05-28T15:17:58Z) - CodaMal: Contrastive Domain Adaptation for Malaria Detection in Low-Cost Microscopes [51.5625352379093]
Malaria is a major health issue worldwide, and its diagnosis requires scalable solutions that can work effectively with low-cost microscopes (LCM)
Deep learning-based methods have shown success in computer-aided diagnosis from microscopic images.
These methods need annotated images that show cells affected by malaria parasites and their life stages.
Annotating images from LCM significantly increases the burden on medical experts compared to annotating images from high-cost microscopes (HCM)
arXiv Detail & Related papers (2024-02-16T06:57:03Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
Cross-modal augmentation of Magnetic Resonance Imaging (MRI) and microscopic imaging based on the same tissue samples is promising.
We tested a method for generating microscopic histological images from MRI scans of the corpus callosum using conditional generative adversarial network (cGAN) architecture.
arXiv Detail & Related papers (2023-10-16T13:58:53Z) - A Novel Confidence Induced Class Activation Mapping for MRI Brain Tumor
Segmentation [19.52081109414247]
We propose the confidence-induced CAM (Cfd-CAM) for weakly-supervised semantic segmentation.
Cfd-CAM calculates the weight of each feature map by using the confidence of the target class.
Our experiments on two brain tumor datasets show that Cfd-CAM outperforms existing state-of-the-art methods.
arXiv Detail & Related papers (2023-06-08T18:01:08Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
We develop a novel model named Mixed-UNet, which has two parallel branches in the decoding phase.
We evaluate the designed Mixed-UNet against several prevalent deep learning-based segmentation approaches on our dataset collected from the local hospital and public datasets.
arXiv Detail & Related papers (2022-05-06T08:37:02Z) - Explainable multiple abnormality classification of chest CT volumes with
AxialNet and HiResCAM [89.2175350956813]
We introduce the challenging new task of explainable multiple abnormality classification in volumetric medical images.
We propose a multiple instance learning convolutional neural network, AxialNet, that allows identification of top slices for each abnormality.
We then aim to improve the model's learning through a novel mask loss that leverages HiResCAM and 3D allowed regions.
arXiv Detail & Related papers (2021-11-24T01:14:33Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
We propose a novel model, Multi-modal Gaussian Process Prior Variational Autoencoder (MGP-VAE), to impute one or more missing sub-modalities for a patient scan.
MGP-VAE can leverage the Gaussian Process (GP) prior on the Variational Autoencoder (VAE) to utilize the subjects/patients and sub-modalities correlations.
We show the applicability of MGP-VAE on brain tumor segmentation where either, two, or three of four sub-modalities may be missing.
arXiv Detail & Related papers (2021-07-07T19:06:34Z) - Deep Learning based Multi-modal Computing with Feature Disentanglement
for MRI Image Synthesis [8.363448006582065]
We propose a deep learning based multi-modal computing model for MRI synthesis with feature disentanglement strategy.
The proposed approach decomposes each input modality into modality-invariant space with shared information and modality-specific space with specific information.
To address the lack of specific information of the target modality in the test phase, a local adaptive fusion (LAF) module is adopted to generate a modality-like pseudo-target.
arXiv Detail & Related papers (2021-05-06T17:22:22Z) - Computational Intelligence Approach to Improve the Classification
Accuracy of Brain Neoplasm in MRI Data [8.980876474818153]
This report presents two improvements for brain neoplasm detection in MRI data.
An advanced preprocessing technique is proposed to improve the area of interest in MRI data.
A hybrid technique using CNN for feature extraction followed by Support Vector Machine (SVM) for classification is also proposed.
arXiv Detail & Related papers (2021-01-24T06:45:26Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.