論文の概要: Probabilistic Risk Assessment of an Obstacle Detection System for GoA 4
Freight Trains
- arxiv url: http://arxiv.org/abs/2306.14814v1
- Date: Mon, 26 Jun 2023 16:18:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-27 12:36:13.898057
- Title: Probabilistic Risk Assessment of an Obstacle Detection System for GoA 4
Freight Trains
- Title(参考訳): GoA4貨物列車の障害物検出システムの確率論的リスク評価
- Authors: Mario Gleirscher and Anne E. Haxthausen and Jan Peleska
- Abstract要約: 本稿では,低速貨物列車の障害物検出機能設計のための定量的リスク評価手法について論じる。
一定の不合理な仮定の下では、結果として生じるハザード率は特定のアプリケーション設定で許容される。
畳み込みニューラルネットワークと従来の画像処理ソフトウェアにおける誤分類の残留リスクを評価する統計的アプローチは、安全クリティカルな障害物検出機能に高い信頼性を配置できることを示唆している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, a quantitative risk assessment approach is discussed for the
design of an obstacle detection function for low-speed freight trains with
grade of automation (GoA)~4. In this 5-step approach, starting with single
detection channels and ending with a three-out-of-three (3oo3) model
constructed of three independent dual-channel modules and a voter, a
probabilistic assessment is exemplified, using a combination of statistical
methods and parametric stochastic model checking. It is illustrated that, under
certain not unreasonable assumptions, the resulting hazard rate becomes
acceptable for specific application settings. The statistical approach for
assessing the residual risk of misclassifications in convolutional neural
networks and conventional image processing software suggests that high
confidence can be placed into the safety-critical obstacle detection function,
even though its implementation involves realistic machine learning
uncertainties.
- Abstract(参考訳): 本稿では,低速貨物列車の自動化度(goa)~4の障害物検出機能を設計するための定量的リスクアセスメント手法について検討する。
この5段階のアプローチでは、単一の検出チャネルから始まり、3つの独立したデュアルチャネルモジュールと投票者からなる3つのアウトオブ3(3oo3)モデルで終わる。
一定の不合理な仮定の下では、結果として生じるハザード率は特定のアプリケーション設定で許容される。
畳み込みニューラルネットワークと従来の画像処理ソフトウェアにおける誤分類の残留リスクを評価する統計的アプローチは、現実的な機械学習の不確実性を伴うにもかかわらず、安全クリティカルな障害物検出機能に高い信頼性を配置できることを示唆している。
関連論文リスト
- PCF-Lift: Panoptic Lifting by Probabilistic Contrastive Fusion [80.79938369319152]
我々は,PCF(Probabilis-tic Contrastive Fusion)に基づくPCF-Liftという新しいパイプラインを設計する。
私たちのPCFリフトは、ScanNetデータセットやMessy Roomデータセット(シーンレベルのPQが4.4%改善)など、広く使用されているベンチマークにおいて、最先端の手法よりも大幅に優れています。
論文 参考訳(メタデータ) (2024-10-14T16:06:59Z) - Probabilistic Parameter Estimators and Calibration Metrics for Pose Estimation from Image Features [30.85393323542915]
本稿では,実時間における測定の不確実性を考慮した確率的パラメータ推定の課題に対処する。
本稿では,最小二乗サンプリング法,線形近似法,確率的プログラミング推定法という3つの確率的パラメータ推定手法を提案する。
線形近似推定器は、他の手法よりも格段に高速にシャープで精度の良いポーズ予測を生成できるが、特定のシナリオにおいて過信な予測をもたらす可能性があることを実証する。
論文 参考訳(メタデータ) (2024-07-23T07:02:01Z) - Predicting Safety Misbehaviours in Autonomous Driving Systems using Uncertainty Quantification [8.213390074932132]
本稿では, 深層学習領域と異なる不確実性定量化手法を, 安全クリティカルな誤動作の予測試験のために評価する。
車両が実施する不確実性スコアは、高い不確実性スコアがサポートされていない実行条件を示すという直感に従って計算する。
本研究では,MC-DropoutとDeep Ensemblesの2つの不確実な定量化手法,すなわち,誤動作回避のための有効性と計算オーバーヘッドの評価を行った。
論文 参考訳(メタデータ) (2024-04-29T10:28:28Z) - Bayesian Safety Validation for Failure Probability Estimation of Black-Box Systems [34.61865848439637]
失敗の確率を推定することは、安全クリティカルなシステムの認証において重要なステップである。
この研究は、ベイズ最適化問題としてブラックボックス安全性検証の問題を補足する。
このアルゴリズムは、障害を探索し、最もよく似た障害を計算し、オペレーティングシステム上での障害確率を推定するように設計されている。
論文 参考訳(メタデータ) (2023-05-03T22:22:48Z) - Model Predictive Control with Gaussian-Process-Supported Dynamical
Constraints for Autonomous Vehicles [82.65261980827594]
本研究では、学習したガウス過程を利用して人間の運転行動を予測する自動運転車のモデル予測制御手法を提案する。
マルチモード予測制御アプローチは、人間のドライバーの意図を考察する。
論文 参考訳(メタデータ) (2023-03-08T17:14:57Z) - Uncertainty-Aware AB3DMOT by Variational 3D Object Detection [74.8441634948334]
不確実性推定は統計的に正確な予測を提供する効果的なツールである。
本稿では,変分ニューラルネットワークを用いたTANet 3Dオブジェクト検出器を提案し,不確実性のある3Dオブジェクト検出を行う。
論文 参考訳(メタデータ) (2023-02-12T14:30:03Z) - Variational Voxel Pseudo Image Tracking [127.46919555100543]
不確実性推定は、ロボット工学や自律運転といった重要な問題にとって重要なタスクである。
本稿では,3次元物体追跡のためのVoxel Pseudo Image Tracking (VPIT) の変分ニューラルネットワークによるバージョンを提案する。
論文 参考訳(メタデータ) (2023-02-12T13:34:50Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
予測信頼性尺度は統計学と機械学習において基本的なものである。
これらの措置は、実際に使用される多種多様なモデルを考慮に入れるべきである。
この研究で開発されたフレームワークは、リスクフィットのトレードオフとして信頼性を表現している。
論文 参考訳(メタデータ) (2020-11-24T19:52:38Z) - Uncertainty Estimation and Calibration with Finite-State Probabilistic
RNNs [29.84563789289183]
不確かさの定量化は、信頼性と信頼性のある機械学習システムを構築するために不可欠である。
本稿では、リカレントニューラルネットワーク(RNN)における離散状態遷移による不確実性の推定を提案する。
モデルの不確実性は、繰り返し状態遷移分布からサンプリングするたびに、予測を数回実行することで定量化することができる。
論文 参考訳(メタデータ) (2020-11-24T10:35:28Z) - Evaluating probabilistic classifiers: Reliability diagrams and score
decompositions revisited [68.8204255655161]
確率的に統計的に一貫性があり、最適に結合し、再現可能な信頼性図を自動生成するCORP手法を導入する。
コーパスは非パラメトリックアイソトニック回帰に基づいており、プール・アジャセント・ヴァイオレータ(PAV)アルゴリズムによって実装されている。
論文 参考訳(メタデータ) (2020-08-07T08:22:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。