論文の概要: Probabilistic Parameter Estimators and Calibration Metrics for Pose Estimation from Image Features
- arxiv url: http://arxiv.org/abs/2407.16223v1
- Date: Tue, 23 Jul 2024 07:02:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 18:25:52.788962
- Title: Probabilistic Parameter Estimators and Calibration Metrics for Pose Estimation from Image Features
- Title(参考訳): 画像特徴量からの詩推定のための確率的パラメータ推定器と校正基準
- Authors: Romeo Valentin, Sydney M. Katz, Joonghyun Lee, Don Walker, Matthew Sorgenfrei, Mykel J. Kochenderfer,
- Abstract要約: 本稿では,実時間における測定の不確実性を考慮した確率的パラメータ推定の課題に対処する。
本稿では,最小二乗サンプリング法,線形近似法,確率的プログラミング推定法という3つの確率的パラメータ推定手法を提案する。
線形近似推定器は、他の手法よりも格段に高速にシャープで精度の良いポーズ予測を生成できるが、特定のシナリオにおいて過信な予測をもたらす可能性があることを実証する。
- 参考スコア(独自算出の注目度): 30.85393323542915
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper addresses the challenge of probabilistic parameter estimation given measurement uncertainty in real-time. We provide a general formulation and apply this to pose estimation for an autonomous visual landing system. We present three probabilistic parameter estimators: a least-squares sampling approach, a linear approximation method, and a probabilistic programming estimator. To evaluate these estimators, we introduce novel closed-form expressions for measuring calibration and sharpness specifically for multivariate normal distributions. Our experimental study compares the three estimators under various noise conditions. We demonstrate that the linear approximation estimator can produce sharp and well-calibrated pose predictions significantly faster than the other methods but may yield overconfident predictions in certain scenarios. Additionally, we demonstrate that these estimators can be integrated with a Kalman filter for continuous pose estimation during a runway approach where we observe a 50\% improvement in sharpness while maintaining marginal calibration. This work contributes to the integration of data-driven computer vision models into complex safety-critical aircraft systems and provides a foundation for developing rigorous certification guidelines for such systems.
- Abstract(参考訳): 本稿では,実時間における測定の不確実性を考慮した確率的パラメータ推定の課題に対処する。
汎用的な定式化を行い、これを自律的な視覚着陸システムのためのポーズ推定に適用する。
本稿では,最小二乗サンプリング法,線形近似法,確率的プログラミング推定法という3つの確率的パラメータ推定手法を提案する。
これらの推定器を評価するために,多変量正規分布に特化してキャリブレーションとシャープネスを測定する新しいクローズドフォーム式を提案する。
種々の騒音条件下での3つの推定器の比較実験を行った。
線形近似推定器は、他の手法よりも格段に高速にシャープで精度の良いポーズ予測を生成できるが、特定のシナリオにおいて過信な予測をもたらす可能性があることを実証する。
さらに,これらの推定器をカルマンフィルタと組み合わせて,限界校正を維持しながらシャープネスの50%改善を観察する滑走路アプローチにおいて,連続的なポーズ推定を行うことを示した。
この研究は、データ駆動型コンピュータビジョンモデルの複雑な安全クリティカルな航空機システムへの統合に寄与し、そのようなシステムのための厳密な認証ガイドラインを開発するための基盤を提供する。
関連論文リスト
- From Conformal Predictions to Confidence Regions [1.4272411349249627]
モデルパラメータに対する信頼領域を確立するために,モデル出力に共形予測間隔を組み合わせたCCRを導入する。
本稿では,雑音に対する最小限の仮定の下でのカバレッジ保証について述べる。
本手法は, 完全あるいはクロスコンフォーマルなアプローチを含む, 分割共形予測とブラックボックス手法の両方に適用可能である。
論文 参考訳(メタデータ) (2024-05-28T21:33:12Z) - Finite Sample Confidence Regions for Linear Regression Parameters Using
Arbitrary Predictors [1.6860963320038902]
線形モデルのパラメータに対する信頼領域を構築するための新しい手法を任意の予測器からの予測を用いて検討する。
導出された信頼領域は、混合線形プログラミングフレームワーク内の制約としてキャストすることができ、線形目的の最適化を可能にする。
従来の手法とは異なり、信頼領域は空であり、仮説テストに使用できる。
論文 参考訳(メタデータ) (2024-01-27T00:15:48Z) - Conformal Approach To Gaussian Process Surrogate Evaluation With
Coverage Guarantees [47.22930583160043]
適応型クロスコンフォーマル予測区間を構築する手法を提案する。
結果として生じる共形予測区間は、ベイズ的信頼性集合に類似した適応性のレベルを示す。
原子炉の蒸気発生器における閉鎖現象の高コスト・評価シミュレータのサロゲートモデリングの文脈において, 本手法の適用可能性を示す。
論文 参考訳(メタデータ) (2024-01-15T14:45:18Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
確率に基づく推論の原理を再検討し、確率比を用いて妥当な信頼シーケンスを構築することを提案する。
本手法は, 精度の高い問題に特に適している。
提案手法は,オンライン凸最適化への接続に光を当てることにより,推定器の最適シーケンスを確実に選択する方法を示す。
論文 参考訳(メタデータ) (2023-11-08T00:10:21Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
本稿では,データあいまいさの予測不確実性を推定するためのポストホックサンプリング手法を提案する。
この方法は与えられた入力に対して異なる可算出力を生成することができ、予測分布のパラメトリック形式を仮定しない。
論文 参考訳(メタデータ) (2023-08-03T12:43:21Z) - Model Predictive Control with Gaussian-Process-Supported Dynamical
Constraints for Autonomous Vehicles [82.65261980827594]
本研究では、学習したガウス過程を利用して人間の運転行動を予測する自動運転車のモデル予測制御手法を提案する。
マルチモード予測制御アプローチは、人間のドライバーの意図を考察する。
論文 参考訳(メタデータ) (2023-03-08T17:14:57Z) - Uncertainty Estimation based on Geometric Separation [13.588210692213568]
機械学習では、特定の入力が正しい確率を正確に予測することがリスク管理に不可欠である。
機械学習モデルにおける不確実性推定を改善するための新しい幾何学的アプローチを提案する。
論文 参考訳(メタデータ) (2023-01-11T13:19:24Z) - PDC-Net+: Enhanced Probabilistic Dense Correspondence Network [161.76275845530964]
高度確率密度対応ネットワーク(PDC-Net+)は、精度の高い高密度対応を推定できる。
我々は、堅牢で一般化可能な不確実性予測に適したアーキテクチャと強化されたトレーニング戦略を開発する。
提案手法は,複数の挑戦的幾何マッチングと光学的フローデータセットに対して,最先端の結果を得る。
論文 参考訳(メタデータ) (2021-09-28T17:56:41Z) - Evaluating probabilistic classifiers: Reliability diagrams and score
decompositions revisited [68.8204255655161]
確率的に統計的に一貫性があり、最適に結合し、再現可能な信頼性図を自動生成するCORP手法を導入する。
コーパスは非パラメトリックアイソトニック回帰に基づいており、プール・アジャセント・ヴァイオレータ(PAV)アルゴリズムによって実装されている。
論文 参考訳(メタデータ) (2020-08-07T08:22:26Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
より優れた統計特性を得るために、二重ローバストなクロスフィット推定器が提案されている。
平均因果効果(ACE)に対する複数の推定器の性能評価のためのシミュレーション研究を行った。
機械学習で使用する場合、二重確率のクロスフィット推定器は、バイアス、分散、信頼区間のカバレッジで他のすべての推定器よりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-04-21T23:09:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。