論文の概要: Uncertainty Estimation and Calibration with Finite-State Probabilistic
RNNs
- arxiv url: http://arxiv.org/abs/2011.12010v1
- Date: Tue, 24 Nov 2020 10:35:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-21 13:45:00.868845
- Title: Uncertainty Estimation and Calibration with Finite-State Probabilistic
RNNs
- Title(参考訳): 有限状態確率RNNによる不確かさ推定と校正
- Authors: Cheng Wang and Carolin Lawrence and Mathias Niepert
- Abstract要約: 不確かさの定量化は、信頼性と信頼性のある機械学習システムを構築するために不可欠である。
本稿では、リカレントニューラルネットワーク(RNN)における離散状態遷移による不確実性の推定を提案する。
モデルの不確実性は、繰り返し状態遷移分布からサンプリングするたびに、予測を数回実行することで定量化することができる。
- 参考スコア(独自算出の注目度): 29.84563789289183
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Uncertainty quantification is crucial for building reliable and trustable
machine learning systems. We propose to estimate uncertainty in recurrent
neural networks (RNNs) via stochastic discrete state transitions over recurrent
timesteps. The uncertainty of the model can be quantified by running a
prediction several times, each time sampling from the recurrent state
transition distribution, leading to potentially different results if the model
is uncertain. Alongside uncertainty quantification, our proposed method offers
several advantages in different settings. The proposed method can (1) learn
deterministic and probabilistic automata from data, (2) learn well-calibrated
models on real-world classification tasks, (3) improve the performance of
out-of-distribution detection, and (4) control the exploration-exploitation
trade-off in reinforcement learning.
- Abstract(参考訳): 不確実性定量化は、信頼性と信頼性のある機械学習システムを構築する上で不可欠である。
本稿では,リカレントニューラルネットワーク(RNN)における確率的離散状態遷移による不確実性の推定を提案する。
モデルの不確実性は、繰り返し状態遷移分布からサンプリングするたびに予測を実行して数回定量化することができ、モデルが不確実であれば、潜在的に異なる結果が得られる。
不確実性の定量化とともに,提案手法は異なる設定でいくつかの利点を提供する。
提案手法は,(1)データから決定論的・確率的オートマトンを学習し,(2)実世界の分類タスクで well-calibrated models を学習し,(3) 分布外検出の性能を改善し,(4) 強化学習における探索・探索トレードオフを制御できる。
関連論文リスト
- Explainability through uncertainty: Trustworthy decision-making with neural networks [1.104960878651584]
不確実性は、あらゆる機械学習モデルの主要な特徴である。
ニューラルネットワークでは特に重要であり、過信されがちである。
XAIとしての不確実性は、下流の意思決定タスクにおけるモデルの信頼性を改善する。
論文 参考訳(メタデータ) (2024-03-15T10:22:48Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
本稿では,データあいまいさの予測不確実性を推定するためのポストホックサンプリング手法を提案する。
この方法は与えられた入力に対して異なる可算出力を生成することができ、予測分布のパラメトリック形式を仮定しない。
論文 参考訳(メタデータ) (2023-08-03T12:43:21Z) - Neural State-Space Models: Empirical Evaluation of Uncertainty
Quantification [0.0]
本稿では,ニューラル状態空間モデルを用いたシステム同定のための不確実性定量化に関する予備的結果を示す。
ベイズ確率的設定で学習問題をフレーム化し、ニューラルネットワークの重みと出力の後方分布を求める。
後部に基づいて,出力の信頼区間を構築し,潜在的に危険なアウト・オブ・ディストリビューション体制下でモデルの使用を効果的に診断できるサプライズ指標を定義する。
論文 参考訳(メタデータ) (2023-04-13T08:57:33Z) - Post-hoc Uncertainty Learning using a Dirichlet Meta-Model [28.522673618527417]
本研究では,不確実性定量化能力の優れた事前学習モデルを構築するための新しいベイズメタモデルを提案する。
提案手法は追加のトレーニングデータを必要としないため,不確かさの定量化に十分な柔軟性がある。
提案するメタモデルアプローチの柔軟性と,これらのアプリケーションに対する優れた経験的性能を実証する。
論文 参考訳(メタデータ) (2022-12-14T17:34:11Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UALは、データ不確実性とモデル不確実性を同時に考慮し、信頼性に配慮した予測を提供することを目的としている。
データ不確実性はサンプル固有のノイズを捕捉する」一方、モデル不確実性はサンプルの予測に対するモデルの信頼を表現している。
論文 参考訳(メタデータ) (2022-10-24T17:53:20Z) - Uncertainty Quantification for Traffic Forecasting: A Unified Approach [21.556559649467328]
不確実性は時系列予測タスクに不可欠な考慮事項である。
本研究では,交通予測の不確かさの定量化に焦点をあてる。
STUQ(Deep S-Temporal Uncertainity Quantification)を開発した。
論文 参考訳(メタデータ) (2022-08-11T15:21:53Z) - Uncertainty Modeling for Out-of-Distribution Generalization [56.957731893992495]
特徴統計を適切に操作することで、ディープラーニングモデルの一般化能力を向上させることができると論じる。
一般的な手法では、特徴統計を学習した特徴から測定された決定論的値とみなすことが多い。
我々は、学習中に合成された特徴統計を用いて、領域シフトの不確かさをモデル化することにより、ネットワークの一般化能力を向上させる。
論文 参考訳(メタデータ) (2022-02-08T16:09:12Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-07T12:30:45Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。