論文の概要: Citadel: Enclaves with Microarchitectural Isolation and Secure Shared Memory on a Speculative Out-of-Order Processor
- arxiv url: http://arxiv.org/abs/2306.14882v3
- Date: Tue, 20 Feb 2024 00:31:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 23:38:50.948901
- Title: Citadel: Enclaves with Microarchitectural Isolation and Secure Shared Memory on a Speculative Out-of-Order Processor
- Title(参考訳): Citadel: 投機的なアウトオブオーダプロセッサ上でのマイクロアーキテクチャ分離とセキュアな共有メモリを実現する
- Authors: Jules Drean, Miguel Gomez-Garcia, Fisher Jepsen, Thomas Bourgeat, Srinivas Devadas,
- Abstract要約: Citadelは、マイクロアーキテクチャーを分離した最初のエンクレーブプラットフォームである。
ハードウェア/ソフトウェアの共同設計を利用して,エンクレーブと信頼できないオペレーティングシステム間の共有メモリを実現する方法を示す。
MNISTでトレーニングされた小さなニューラルネットワークを組み込み、プライベートな推論エンクレーブを実行します。
- 参考スコア(独自算出の注目度): 8.414722884952525
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Enclaves or Trusted Execution Environments are trusted-hardware primitives that make it possible to isolate and protect a sensitive program from an untrusted operating system. Unfortunately, almost all existing enclave platforms are vulnerable to microarchitectural side channels and transient execution attacks, and the one academic proposal that is not does not allow programs to interact with the outside world. We present Citadel, to our knowledge, the first enclave platform with microarchitectural isolation to run realistic secure programs on a speculative out-of-order multicore processor. We show how to leverage hardware/software co-design to enable shared memory between an enclave and an untrusted operating system while preventing speculative transmitters between the enclave and a potential adversary. We then evaluate our secure baseline and present further mechanisms to achieve reasonable performance for out-of-the-box programs. Our multicore processor runs on an FPGA and boots untrusted Linux from which users can securely launch and interact with enclaves. To demonstrate our platform capabilities, we run a private inference enclave that embed a small neural network trained on MNIST. A remote user can remotely attest the enclave integrity, perform key exchange and send encrypted input for secure evaluation. We open-source our end-to-end hardware and software infrastructure, hoping to spark more research and bridge the gap between conceptual proposals and FPGA prototypes.
- Abstract(参考訳): EnclavesまたはTrusted Execution Environmentsは、信頼できないオペレーティングシステムからセンシティブなプログラムを分離し、保護できるようにする、信頼できるハードウェアプリミティブである。
残念ながら、ほとんどの既存のエンクレーブプラットフォームは、マイクロアーキテクチャーサイドチャネルや過渡的な実行攻撃に弱い。
我々は、Citadelについて、マイクロアーキテクチャ分離による最初のエンクレーブプラットフォームとして、投機的なアウトオブオーダーマルチコアプロセッサ上で、現実的なセキュアなプログラムを実行することを示します。
本稿では,ハードウェア/ソフトウェアの共同設計を活用して,エンクレーブと非信頼なオペレーティングシステム間の共有メモリを実現するとともに,エンクレーブと潜在的敵との投機的送信を防止する方法について述べる。
次に、セキュアなベースラインを評価し、アウト・オブ・ザ・ボックスプログラムの適切な性能を達成するためのさらなるメカニズムを提案する。
私たちのマルチコアプロセッサはFPGA上で動作し、信頼できないLinuxを起動します。
プラットフォームの能力を実証するために、MNISTでトレーニングされた小さなニューラルネットワークを組み込んだプライベート推論エンクレーブを実行しています。
リモートユーザは、エンクレーブ整合性をリモートで証明し、鍵交換を行い、暗号化された入力を送り、セキュアな評価を行うことができる。
私たちはエンドツーエンドのハードウェアとソフトウェアインフラストラクチャをオープンソースとして公開し、より多くの研究を刺激し、概念的な提案とFPGAプロトタイプのギャップを埋めたいと考えています。
関連論文リスト
- μRL: Discovering Transient Execution Vulnerabilities Using Reinforcement Learning [4.938372714332782]
本稿では,SpectreやMeltdownといったマイクロアーキテクチャの脆弱性を発見する上での課題に対して,強化学習を用いることを提案する。
我々のRLエージェントはプロセッサと対話し、リアルタイムフィードバックから学び、命令シーケンスを優先順位付けすることで脆弱性を明らかにする。
論文 参考訳(メタデータ) (2025-02-20T06:42:03Z) - Comprehensive Kernel Safety in the Spectre Era: Mitigations and Performance Evaluation (Extended Version) [2.0436753359071913]
レイアウトのランダム化は、メモリ分離を伴うシステムにおいて、同等の安全性を保証できることを示す。
サイドチャネルと投機的実行を使用できる攻撃者に対しては,カーネルの安全性を回復できないことを示す。
我々は、Spectre時代の安全なシステムコールに対して、投機的カーネル安全性を保証できる強制機構を導入する。
論文 参考訳(メタデータ) (2024-11-27T07:06:28Z) - BULKHEAD: Secure, Scalable, and Efficient Kernel Compartmentalization with PKS [16.239598954752594]
カーネルの区画化は、最小特権原理に従う有望なアプローチである。
本稿では,セキュアでスケーラブルで効率的なカーネルコンパートナライズ技術であるBULKHEADを提案する。
ロード可能なカーネルモジュールを分割するプロトタイプシステムをLinux v6.1で実装する。
論文 参考訳(メタデータ) (2024-09-15T04:11:26Z) - PriRoAgg: Achieving Robust Model Aggregation with Minimum Privacy Leakage for Federated Learning [49.916365792036636]
フェデレートラーニング(FL)は、大規模分散ユーザデータを活用する可能性から、最近大きな勢いを増している。
送信されたモデル更新は、センシティブなユーザ情報をリークする可能性があり、ローカルなトレーニングプロセスの集中的な制御の欠如は、モデル更新に対する悪意のある操作の影響を受けやすいグローバルモデルを残します。
我々は、Lagrange符号化計算と分散ゼロ知識証明を利用した汎用フレームワークPriRoAggを開発し、集約されたプライバシを満たすとともに、幅広いロバストな集約アルゴリズムを実行する。
論文 参考訳(メタデータ) (2024-07-12T03:18:08Z) - Jailbreaking as a Reward Misspecification Problem [80.52431374743998]
本稿では,この脆弱性をアライメントプロセス中に不特定性に対処する新たな視点を提案する。
本稿では,報酬の相違の程度を定量化し,その有効性を実証する指標ReGapを紹介する。
ReMissは、報酬ミスの空間で敵のプロンプトを生成する自動レッドチームリングシステムである。
論文 参考訳(メタデータ) (2024-06-20T15:12:27Z) - Beyond Over-Protection: A Targeted Approach to Spectre Mitigation and Performance Optimization [3.4439829486606737]
LLVMの投機的負荷硬化は、投機状態を追跡し、誤特定時に値をマスキングすることで、漏洩を防止する。
既存のサイドチャネルモデル検証フレームワークであるScam-Vを拡張して、Spectre-PHT攻撃に対するプログラムの脆弱性をチェックし、slhアプローチを用いてプログラムの保護を最適化する。
論文 参考訳(メタデータ) (2023-12-15T13:16:50Z) - Code Polymorphism Meets Code Encryption: Confidentiality and Side-Channel Protection of Software Components [0.0]
PolEnは、サイドチャネル攻撃を効果的に軽減するために、対策を組み合わせるツールチェーンとプロセッサアーキテクチャである。
コード暗号化はプロセッサ拡張によってサポートされ、マシン命令はCPU内でのみ復号化される。
プログラムの可観測環境を定期的に変更し、攻撃者が予測できないようにする。
論文 参考訳(メタデータ) (2023-10-11T09:16:10Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
垂直ロジスティック回帰(VLR)をミニバッチ降下勾配で訓練した。
我々は、オープンソースのフェデレーション学習フレームワークのクラスにおいて、VLRの包括的で厳密なプライバシー分析を提供する。
論文 参考訳(メタデータ) (2022-07-19T05:47:30Z) - RelaxLoss: Defending Membership Inference Attacks without Losing Utility [68.48117818874155]
より達成可能な学習目標を持つ緩和された損失に基づく新しい学習フレームワークを提案する。
RelaxLossは、簡単な実装と無視可能なオーバーヘッドのメリットを加えた任意の分類モデルに適用できる。
当社のアプローチはMIAに対するレジリエンスの観点から,常に最先端の防御機構より優れています。
論文 参考訳(メタデータ) (2022-07-12T19:34:47Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
EXEmplesは、比較的少ない入力バイトを摂動することで、機械学習に基づく検出をバイパスすることができる。
我々は、機械学習モデルに対する過去の攻撃を包含し、一般化するだけでなく、3つの新たな攻撃を含む統一フレームワークを開発する。
これらの攻撃はFull DOS、Extended、Shiftと呼ばれ、DOSヘッダをそれぞれ操作し、拡張し、第1セクションの内容を変更することで、敵のペイロードを注入する。
論文 参考訳(メタデータ) (2020-08-17T07:16:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。