論文の概要: "You might think about slightly revising the title": identifying hedges
in peer-tutoring interactions
- arxiv url: http://arxiv.org/abs/2306.14911v1
- Date: Sun, 18 Jun 2023 12:47:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-02 13:27:28.611156
- Title: "You might think about slightly revising the title": identifying hedges
in peer-tutoring interactions
- Title(参考訳): 「少し改題しようと思うかもしれない」--ピアツーリングにおけるヘッジの特定
- Authors: Yann Raphalen, Chlo\'e Clavel, Justine Cassell
- Abstract要約: ヘッジは会話の相互作用の管理において重要な役割を果たす。
我々は、ヘッジを特定するための計算フレームワークを構築するために、マルチモーダルなピアチューニングデータセットを使用する。
我々は、ピアチューニング会話でヘッジを特徴付ける特徴を探索するために、モデル説明可能性ツールを使用します。
- 参考スコア(独自算出の注目度): 1.0466434989449724
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hedges play an important role in the management of conversational
interaction. In peer tutoring, they are notably used by tutors in dyads (pairs
of interlocutors) experiencing low rapport to tone down the impact of
instructions and negative feedback. Pursuing the objective of building a
tutoring agent that manages rapport with students in order to improve learning,
we used a multimodal peer-tutoring dataset to construct a computational
framework for identifying hedges. We compared approaches relying on pre-trained
resources with others that integrate insights from the social science
literature. Our best performance involved a hybrid approach that outperforms
the existing baseline while being easier to interpret. We employ a model
explainability tool to explore the features that characterize hedges in
peer-tutoring conversations, and we identify some novel features, and the
benefits of such a hybrid model approach.
- Abstract(参考訳): ヘッジは会話の相互作用の管理において重要な役割を果たす。
ピア・チュータリングでは、インストラクションやネガティブなフィードバックの影響を抑えるために低いラプポートを経験するダイアド(インターロケーターのペア)の家庭教師が特に用いている。
学習を改善するために学生とのラプポートを管理する学習エージェント構築の目的を追求し,マルチモーダルピアツーリングデータセットを用いてヘッジ識別のための計算フレームワークを構築した。
我々は,社会科学文献の洞察を取り入れた,事前学習した資源を活用したアプローチを比較した。
私たちの最高のパフォーマンスは、解釈しやすく、既存のベースラインを上回るハイブリッドアプローチでした。
我々は,ピアツーリング会話におけるヘッジを特徴付ける特徴を探索するためにモデル説明可能性ツールを用い,新たな特徴とハイブリッドモデルアプローチの利点を明らかにした。
関連論文リスト
- Prosody as a Teaching Signal for Agent Learning: Exploratory Studies and Algorithmic Implications [2.8243597585456017]
本稿では,人間教師からのエージェント学習を強化するための教示信号として,韻律の統合を提唱する。
その結果,明示的なフィードバックと組み合わせることで,韻律的特徴が強化学習効果を高めることが示唆された。
論文 参考訳(メタデータ) (2024-10-31T01:51:23Z) - Revisiting Self-supervised Learning of Speech Representation from a
Mutual Information Perspective [68.20531518525273]
我々は、情報理論の観点から、既存の自己教師型音声の手法を詳しく検討する。
我々は線形プローブを用いて、対象情報と学習された表現の間の相互情報を推定する。
我々は、ラベルを使わずに、データの異なる部分間の相互情報を見積もる自己教師型の表現を評価する可能性を探る。
論文 参考訳(メタデータ) (2024-01-16T21:13:22Z) - When to generate hedges in peer-tutoring interactions [1.0466434989449724]
この研究は、自然言語のターン、会話戦略、学習戦略、非言語行動に注釈を付けた、自然主義的な対面データセットを使用している。
その結果、前のターンのセマンティック情報をキャプチャする埋め込み層は、モデルの性能を著しく向上させることがわかった。
教師の視線とタテの視線がヘッジ予測に大きく影響していることが判明した。
論文 参考訳(メタデータ) (2023-07-28T14:29:19Z) - Opportunities and Challenges in Neural Dialog Tutoring [54.07241332881601]
言語学習のための2つの対話学習データセットを用いて、様々な生成言語モデルを厳密に分析する。
現在のアプローチでは、制約のある学習シナリオでチューリングをモデル化できますが、制約の少ないシナリオではパフォーマンスが悪くなります。
人的品質評価では, モデルと接地木アノテーションの両方が, 同等のチュータリングの点で低い性能を示した。
論文 参考訳(メタデータ) (2023-01-24T11:00:17Z) - Investigating Fairness Disparities in Peer Review: A Language Model
Enhanced Approach [77.61131357420201]
我々は、大規模言語モデル(LM)の助けを借りて、ピアレビューにおける公平性格差の徹底した厳密な研究を行う。
我々は、2017年から現在までのICLR(International Conference on Learning Representations)カンファレンスで、包括的なリレーショナルデータベースを収集、組み立て、維持しています。
我々は、著作者性別、地理、著作者、機関的名声など、興味のある複数の保護属性に対する公平性の違いを仮定し、研究する。
論文 参考訳(メタデータ) (2022-11-07T16:19:42Z) - Semantic Interactive Learning for Text Classification: A Constructive
Approach for Contextual Interactions [0.0]
本稿では,テキスト領域に対するセマンティック対話学習という新しいインタラクションフレームワークを提案する。
構築的および文脈的フィードバックを学習者に取り入れることで、人間と機械間のよりセマンティックなアライメントを実現するアーキテクチャを見つけることができる。
本研究では,人間の概念的修正を非外挿訓練例に翻訳するのに有効なSemanticPushという手法を提案する。
論文 参考訳(メタデータ) (2022-09-07T08:13:45Z) - Utterance Rewriting with Contrastive Learning in Multi-turn Dialogue [22.103162555263143]
比較学習とマルチタスク学習を導入し、問題を共同でモデル化する。
提案手法は,複数の公開データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-03-22T10:13:27Z) - Re-entry Prediction for Online Conversations via Self-Supervised
Learning [25.488783376789026]
本稿では,再突入予測のための自己教師型信号として,スプレッドパターン,繰り返しターゲットユーザ,ターンオーサシップの3つの補助タスクを提案する。
Twitter と Reddit から新たに収集した2つのデータセットの実験結果から,我々の手法が過去の最先端よりも優れていることが示された。
論文 参考訳(メタデータ) (2021-09-05T08:07:52Z) - Probing Task-Oriented Dialogue Representation from Language Models [106.02947285212132]
本稿では,タスク指向対話タスクにおいて,どのモデルが本質的に最も有意義な表現を担っているかを明らかにするために,事前学習された言語モデルについて検討する。
我々は、アノテートラベルを教師付き方法で固定された事前学習言語モデルの上に、分類器プローブとしてフィードフォワード層を微調整する。
論文 参考訳(メタデータ) (2020-10-26T21:34:39Z) - Enhancing Dialogue Generation via Multi-Level Contrastive Learning [57.005432249952406]
質問に対する応答のきめ細かい品質をモデル化するマルチレベルコントラスト学習パラダイムを提案する。
Rank-aware (RC) ネットワークはマルチレベルコントラスト最適化の目的を構築するために設計されている。
本研究では,知識推論(KI)コンポーネントを構築し,学習中の参照からキーワードの知識を抽出し,そのような情報を活用して情報的単語の生成を促す。
論文 参考訳(メタデータ) (2020-09-19T02:41:04Z) - Learning an Effective Context-Response Matching Model with
Self-Supervised Tasks for Retrieval-based Dialogues [88.73739515457116]
我々は,次のセッション予測,発話復元,不整合検出,一貫性判定を含む4つの自己教師型タスクを導入する。
我々はPLMに基づく応答選択モデルとこれらの補助タスクをマルチタスク方式で共同で訓練する。
実験結果から,提案した補助的自己教師型タスクは,多ターン応答選択において大きな改善をもたらすことが示された。
論文 参考訳(メタデータ) (2020-09-14T08:44:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。